
A satellite can be in a geostationary orbit around the earth at a distance from the center. If the angular velocity of earth about its axis doubles, a satellite can now be in a geostationary orbit around the earth is its distance from the center is
(A)
(B)
(C)
(D)
Answer
438.6k+ views
Hint: For the geostationary satellites, the angular velocity of the geostationary satellites is equal to the angular velocity of the Earth. By using Kepler’s third law, we can find the relation between the angular velocity and the distance from the center.
Complete answer:
A geostationary satellite can be defined as the satellite having the orbital periodic time of which is similar to the Earth.
Hence, it moves with the same angular velocity as the earth. Due to this, the satellite appears stationary when viewed from the earth, hence it is known as the geostationary satellite.
Now, we know that the gravitational force on the satellite is balanced by the centripetal force on the satellite.
, where is the mass of the satellite, is the mass of earth, is the distance from the center of the earth, and is the velocity of the satellite
Now, we know the relation between linear velocity and angular velocity can be written as,
Substituting this value in the equation.
From this the relationship between the angular velocity and the distance is
For the given case,
By taking the ratio,
Substituting the given data,
Simplifying the powers,
Hence, the correct answer is Option .
Note:
The relation derived here between time period and distance from the center of the earth is known as Kepler’s third law, which states “The square of the time period of the revolution of a planet is proportional to the cube of the semi-major axis of its elliptical orbit.”
Complete answer:
A geostationary satellite can be defined as the satellite having the orbital periodic time of
Hence, it moves with the same angular velocity as the earth. Due to this, the satellite appears stationary when viewed from the earth, hence it is known as the geostationary satellite.
Now, we know that the gravitational force on the satellite is balanced by the centripetal force on the satellite.
Now, we know the relation between linear velocity and angular velocity can be written as,
Substituting this value in the equation.
From this the relationship between the angular velocity and the distance is
For the given case,
By taking the ratio,
Substituting the given data,
Simplifying the powers,
Hence, the correct answer is Option
Note:
The relation derived here between time period and distance from the center of the earth is known as Kepler’s third law, which states “The square of the time period of the revolution of a planet is proportional to the cube of the semi-major axis of its elliptical orbit.”
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
