Answer
Verified
470.7k+ views
Hint: Here, the semicircle is inscribed in a right angle triangle so that its diameter lies on the hypotenuse which means that the point that intersects the semicircle at two points lies outside the circle. And another line passes through this point which is tangent, then the power of the circle is given as- ${\text{(tangen}}{{\text{t}})^2} = {\text{product of the two points}}$
Complete step-by-step answer:
Let R be the radius of the semicircle and T be the tangent. Since the point through which the tangent passes and that intersects the semi-circle on two points lies outside the circle then the power of circle is-
$ \Rightarrow $ ${\text{tangen}}{{\text{t}}^2} = {\text{product of the two points}}$ ${{\text{(T)}}^2}{\text{ = }}\left( {15 - {\text{R}}} \right)\left( {15 + {\text{R}}} \right)$=$225 - {{\text{R}}^2}$ --- (i)
Since the triangles are similar triangles, that is, same in shape but not in size so the ratio of corresponding sides of the triangles will be equal. Then we can write the ratio of radius to hypotenuse of right angled triangle is-
$ \Rightarrow \dfrac{{\text{T}}}{{\text{R}}} = \dfrac{{15}}{{20}} = \dfrac{3}{4}$=k (let) --- (ii)
On solving the equation eq. (ii)
$ \Rightarrow {\text{T = 3k and R = 4k}}$
On putting these values in eq. (i), we get-
$ \Rightarrow {\left( {3{\text{k}}} \right)^2} = 225 - {\left( {4{\text{k}}} \right)^2}$ $ \Rightarrow 9{{\text{k}}^2}{\text{ = 225 - 16}}{{\text{k}}^2}$
On separating the coefficients of k, we get-
$
\Rightarrow \left( {16 + 9} \right){{\text{k}}^2} = 225 \Rightarrow 25{{\text{k}}^2} = 225 \\
\Rightarrow {{\text{k}}^2} = \dfrac{{225}}{{25}} = 9 \\
$
$ \Rightarrow {\text{k}} = 3$
On putting the value of k , we get,${\text{R = 12 and T = 9}}$
To find arc length, we use the given formula-
Arc length of quarter circle=$\dfrac{{\pi {\text{R}}}}{2}$
On putting the values, we get the arc length.
Arc length=$\dfrac{{\pi \times 12}}{2} = 6\pi $
Hence the arc length is $6\pi $ .
Note: The arc length of full circle is given by $\dfrac{{\pi {\text{R}}}}{4}$ as ${90^ \circ }$ is one quarter of a circle and 360 is full quarter. So to find the arc we change the formula to $\dfrac{{\pi {\text{R}}}}{2}$ .
Here, we have taken radius as hypotenuse because the radius of the circle lies on the hypotenuse.
Complete step-by-step answer:
Let R be the radius of the semicircle and T be the tangent. Since the point through which the tangent passes and that intersects the semi-circle on two points lies outside the circle then the power of circle is-
$ \Rightarrow $ ${\text{tangen}}{{\text{t}}^2} = {\text{product of the two points}}$ ${{\text{(T)}}^2}{\text{ = }}\left( {15 - {\text{R}}} \right)\left( {15 + {\text{R}}} \right)$=$225 - {{\text{R}}^2}$ --- (i)
Since the triangles are similar triangles, that is, same in shape but not in size so the ratio of corresponding sides of the triangles will be equal. Then we can write the ratio of radius to hypotenuse of right angled triangle is-
$ \Rightarrow \dfrac{{\text{T}}}{{\text{R}}} = \dfrac{{15}}{{20}} = \dfrac{3}{4}$=k (let) --- (ii)
On solving the equation eq. (ii)
$ \Rightarrow {\text{T = 3k and R = 4k}}$
On putting these values in eq. (i), we get-
$ \Rightarrow {\left( {3{\text{k}}} \right)^2} = 225 - {\left( {4{\text{k}}} \right)^2}$ $ \Rightarrow 9{{\text{k}}^2}{\text{ = 225 - 16}}{{\text{k}}^2}$
On separating the coefficients of k, we get-
$
\Rightarrow \left( {16 + 9} \right){{\text{k}}^2} = 225 \Rightarrow 25{{\text{k}}^2} = 225 \\
\Rightarrow {{\text{k}}^2} = \dfrac{{225}}{{25}} = 9 \\
$
$ \Rightarrow {\text{k}} = 3$
On putting the value of k , we get,${\text{R = 12 and T = 9}}$
To find arc length, we use the given formula-
Arc length of quarter circle=$\dfrac{{\pi {\text{R}}}}{2}$
On putting the values, we get the arc length.
Arc length=$\dfrac{{\pi \times 12}}{2} = 6\pi $
Hence the arc length is $6\pi $ .
Note: The arc length of full circle is given by $\dfrac{{\pi {\text{R}}}}{4}$ as ${90^ \circ }$ is one quarter of a circle and 360 is full quarter. So to find the arc we change the formula to $\dfrac{{\pi {\text{R}}}}{2}$ .
Here, we have taken radius as hypotenuse because the radius of the circle lies on the hypotenuse.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE