Answer
Verified
481.2k+ views
Hint: A vector can be resolved into its components. This problem can be solved by resolving components of the velocities of the two ships. Equating components wherever possible may give us the required answer.
Step by step solution:
We have ship 1 travelling in the east direction with a speed of 10km/h.
${{\text{v}}_1} = 10km/h$
The ship 2 is travelling at an angle of 30$^\circ $ east of north direction with speed ${{\text{v}}_2}$. We need to find the velocity of the second ship with the available information. We can diagrammatically represent the situation as follows:
Here we have resolved the velocity ${{\text{v}}_2}$ into its components ${{\text{v}}_2}\sin \theta $ and ${{\text{v}}_2}\cos \theta $ where $\theta = 30^\circ $.
We see that component ${{\text{v}}_2}\sin \theta $ coincides with ${{\text{v}}_1}$ which means that they must be equal to each other. So, we can write
$
{{\text{v}}_2}\sin \theta = {{\text{v}}_1} \\
\Rightarrow {{\text{v}}_2} = \dfrac{{{{\text{v}}_1}}}{{\sin \theta }} \\
$
Putting the known values, we get
${{\text{v}}_2} = \dfrac{{10}}{{\sin 30^\circ }} = 10 \times 2 = 20km/h$
This is the required value and the correct answer is option C.
Additional information:
The magnitude of a vector can be calculated from its components using the Pythagoras theorem. If a vector V has components ${{\text{v}}_x}$ and ${{\text{v}}_y}$ then magnitude of vector V is given by the following expression:
${\text{V}} = \sqrt {{\text{v}}_x^2 + {\text{v}}_y^2} $
We can also resolve components of a vector in 3 dimensions. In case of 3-dimensional representation, the components of V would be ${{\text{v}}_x}$, ${{\text{v}}_y}$ and ${{\text{v}}_z}$. The magnitude of V in this case is given by modified Pythagorean Theorem as the following expression:
${\text{V}} = \sqrt {{\text{v}}_x^2 + {\text{v}}_y^2 + {\text{v}}_z^2} $
Note: The components of a vector are constructed using trigonometric identities which satisfy the Pythagorean Theorem for the magnitude of the vector. The components signify the directions in which a part of the main vector can be distributed and we designate those directions to be along the coordinate axes.
Step by step solution:
We have ship 1 travelling in the east direction with a speed of 10km/h.
${{\text{v}}_1} = 10km/h$
The ship 2 is travelling at an angle of 30$^\circ $ east of north direction with speed ${{\text{v}}_2}$. We need to find the velocity of the second ship with the available information. We can diagrammatically represent the situation as follows:
Here we have resolved the velocity ${{\text{v}}_2}$ into its components ${{\text{v}}_2}\sin \theta $ and ${{\text{v}}_2}\cos \theta $ where $\theta = 30^\circ $.
We see that component ${{\text{v}}_2}\sin \theta $ coincides with ${{\text{v}}_1}$ which means that they must be equal to each other. So, we can write
$
{{\text{v}}_2}\sin \theta = {{\text{v}}_1} \\
\Rightarrow {{\text{v}}_2} = \dfrac{{{{\text{v}}_1}}}{{\sin \theta }} \\
$
Putting the known values, we get
${{\text{v}}_2} = \dfrac{{10}}{{\sin 30^\circ }} = 10 \times 2 = 20km/h$
This is the required value and the correct answer is option C.
Additional information:
The magnitude of a vector can be calculated from its components using the Pythagoras theorem. If a vector V has components ${{\text{v}}_x}$ and ${{\text{v}}_y}$ then magnitude of vector V is given by the following expression:
${\text{V}} = \sqrt {{\text{v}}_x^2 + {\text{v}}_y^2} $
We can also resolve components of a vector in 3 dimensions. In case of 3-dimensional representation, the components of V would be ${{\text{v}}_x}$, ${{\text{v}}_y}$ and ${{\text{v}}_z}$. The magnitude of V in this case is given by modified Pythagorean Theorem as the following expression:
${\text{V}} = \sqrt {{\text{v}}_x^2 + {\text{v}}_y^2 + {\text{v}}_z^2} $
Note: The components of a vector are constructed using trigonometric identities which satisfy the Pythagorean Theorem for the magnitude of the vector. The components signify the directions in which a part of the main vector can be distributed and we designate those directions to be along the coordinate axes.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Find the value of the expression given below sin 30circ class 11 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
On which part of the tongue most of the taste gets class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Who is the leader of the Lok Sabha A Chief Minister class 11 social science CBSE