A ship is travelling due east at 10km/h. A ship heading 30$^\circ $ east of north is always due north from the first ship. The speed of the second ship in km/h is:
$
{\text{A}}{\text{. }}20\sqrt 2 \\
{\text{B}}{\text{. 20}}\sqrt {\dfrac{3}{2}} \\
{\text{C}}{\text{. 20}} \\
{\text{D}}{\text{. }}\dfrac{{20}}{{\sqrt 2 }} \\
$
Answer
Verified
490.2k+ views
Hint: A vector can be resolved into its components. This problem can be solved by resolving components of the velocities of the two ships. Equating components wherever possible may give us the required answer.
Step by step solution:
We have ship 1 travelling in the east direction with a speed of 10km/h.
${{\text{v}}_1} = 10km/h$
The ship 2 is travelling at an angle of 30$^\circ $ east of north direction with speed ${{\text{v}}_2}$. We need to find the velocity of the second ship with the available information. We can diagrammatically represent the situation as follows:
Here we have resolved the velocity ${{\text{v}}_2}$ into its components ${{\text{v}}_2}\sin \theta $ and ${{\text{v}}_2}\cos \theta $ where $\theta = 30^\circ $.
We see that component ${{\text{v}}_2}\sin \theta $ coincides with ${{\text{v}}_1}$ which means that they must be equal to each other. So, we can write
$
{{\text{v}}_2}\sin \theta = {{\text{v}}_1} \\
\Rightarrow {{\text{v}}_2} = \dfrac{{{{\text{v}}_1}}}{{\sin \theta }} \\
$
Putting the known values, we get
${{\text{v}}_2} = \dfrac{{10}}{{\sin 30^\circ }} = 10 \times 2 = 20km/h$
This is the required value and the correct answer is option C.
Additional information:
The magnitude of a vector can be calculated from its components using the Pythagoras theorem. If a vector V has components ${{\text{v}}_x}$ and ${{\text{v}}_y}$ then magnitude of vector V is given by the following expression:
${\text{V}} = \sqrt {{\text{v}}_x^2 + {\text{v}}_y^2} $
We can also resolve components of a vector in 3 dimensions. In case of 3-dimensional representation, the components of V would be ${{\text{v}}_x}$, ${{\text{v}}_y}$ and ${{\text{v}}_z}$. The magnitude of V in this case is given by modified Pythagorean Theorem as the following expression:
${\text{V}} = \sqrt {{\text{v}}_x^2 + {\text{v}}_y^2 + {\text{v}}_z^2} $
Note: The components of a vector are constructed using trigonometric identities which satisfy the Pythagorean Theorem for the magnitude of the vector. The components signify the directions in which a part of the main vector can be distributed and we designate those directions to be along the coordinate axes.
Step by step solution:
We have ship 1 travelling in the east direction with a speed of 10km/h.
${{\text{v}}_1} = 10km/h$
The ship 2 is travelling at an angle of 30$^\circ $ east of north direction with speed ${{\text{v}}_2}$. We need to find the velocity of the second ship with the available information. We can diagrammatically represent the situation as follows:
Here we have resolved the velocity ${{\text{v}}_2}$ into its components ${{\text{v}}_2}\sin \theta $ and ${{\text{v}}_2}\cos \theta $ where $\theta = 30^\circ $.
We see that component ${{\text{v}}_2}\sin \theta $ coincides with ${{\text{v}}_1}$ which means that they must be equal to each other. So, we can write
$
{{\text{v}}_2}\sin \theta = {{\text{v}}_1} \\
\Rightarrow {{\text{v}}_2} = \dfrac{{{{\text{v}}_1}}}{{\sin \theta }} \\
$
Putting the known values, we get
${{\text{v}}_2} = \dfrac{{10}}{{\sin 30^\circ }} = 10 \times 2 = 20km/h$
This is the required value and the correct answer is option C.
Additional information:
The magnitude of a vector can be calculated from its components using the Pythagoras theorem. If a vector V has components ${{\text{v}}_x}$ and ${{\text{v}}_y}$ then magnitude of vector V is given by the following expression:
${\text{V}} = \sqrt {{\text{v}}_x^2 + {\text{v}}_y^2} $
We can also resolve components of a vector in 3 dimensions. In case of 3-dimensional representation, the components of V would be ${{\text{v}}_x}$, ${{\text{v}}_y}$ and ${{\text{v}}_z}$. The magnitude of V in this case is given by modified Pythagorean Theorem as the following expression:
${\text{V}} = \sqrt {{\text{v}}_x^2 + {\text{v}}_y^2 + {\text{v}}_z^2} $
Note: The components of a vector are constructed using trigonometric identities which satisfy the Pythagorean Theorem for the magnitude of the vector. The components signify the directions in which a part of the main vector can be distributed and we designate those directions to be along the coordinate axes.
Recently Updated Pages
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Class 11 Question and Answer - Your Ultimate Solutions Guide
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE