Answer
Verified
430.5k+ views
Hint: A spring is compressed or displaced from its mean position due to which it gains some potential energy. When the spring is released and a mass is kept at the starting point, the potential energy of the spring is transferred to the mass. Therefore, equating the potential energies of both the spring and the mass, height can be calculated.
Formula used:
$\dfrac{1}{2}k{{x}^{2}}=mgh$
Complete answer:
When the spring is compressed or expanded, it is displaced from its mean position due to which it gains potential energy by virtue of its compression or expansion. When an object is kept at the starting point and the spring is released, the potential energy of the spring gets transferred to the object
The spring’s potential energy is calculated as-
$P=\dfrac{1}{2}k{{x}^{2}}$
Here, $P$ is the potential energy
$k$ is the spring constant
$x$ is the displacement of the spring
Therefore,
$\dfrac{1}{2}k{{x}^{2}}=mgh$ -(1)
Here, $m$ is the mass of the body
$g$ is the acceleration due to gravity
$h$ is the height
Given, $k=1000N{{m}^{-1}}$, $x=0.1m$, $M=0.2kg$, $g=10m{{s}^{-2}}$.
Substituting given values in eq (1) equation, we get,
$\begin{align}
& \dfrac{1}{2}\times 1000{{({{10}^{-1}})}^{2}}=0.2\times 10h \\
& \Rightarrow 500\times {{10}^{-2}}=2h \\
& \therefore 2.5m=h \\
\end{align}$
The object will move to a maximum height of $2.5m$.
Therefore, the mass will rise to a height of $2.5m$ when kept at the starting point of the compressed spring.
Note:
The oscillation of spring is a harmonic motion which works on the principle that the force is directly proportional to the negative of displacement. A recoil force is developed in the spring when displaced from its mean position which brings it back to its original position. This force acts on the mass and fires it upto a certain height.
Formula used:
$\dfrac{1}{2}k{{x}^{2}}=mgh$
Complete answer:
When the spring is compressed or expanded, it is displaced from its mean position due to which it gains potential energy by virtue of its compression or expansion. When an object is kept at the starting point and the spring is released, the potential energy of the spring gets transferred to the object
The spring’s potential energy is calculated as-
$P=\dfrac{1}{2}k{{x}^{2}}$
Here, $P$ is the potential energy
$k$ is the spring constant
$x$ is the displacement of the spring
Therefore,
$\dfrac{1}{2}k{{x}^{2}}=mgh$ -(1)
Here, $m$ is the mass of the body
$g$ is the acceleration due to gravity
$h$ is the height
Given, $k=1000N{{m}^{-1}}$, $x=0.1m$, $M=0.2kg$, $g=10m{{s}^{-2}}$.
Substituting given values in eq (1) equation, we get,
$\begin{align}
& \dfrac{1}{2}\times 1000{{({{10}^{-1}})}^{2}}=0.2\times 10h \\
& \Rightarrow 500\times {{10}^{-2}}=2h \\
& \therefore 2.5m=h \\
\end{align}$
The object will move to a maximum height of $2.5m$.
Therefore, the mass will rise to a height of $2.5m$ when kept at the starting point of the compressed spring.
Note:
The oscillation of spring is a harmonic motion which works on the principle that the force is directly proportional to the negative of displacement. A recoil force is developed in the spring when displaced from its mean position which brings it back to its original position. This force acts on the mass and fires it upto a certain height.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE