
(a) Show that $\cos 3\theta - \sin 3\theta = (\cos \theta + \sin \theta )(1 - 2\sin 2\theta )$
(b) If $\tan A = \dfrac{5}{6}$ and $\tan B = \dfrac{1}{{11}}$ then show that $A + B = \dfrac{\pi }{4}$ or $\dfrac{{5\pi }}{4}$
Answer
483.3k+ views
Hint: Here, we have to solve trigonometric functions. In order to solve this questions we first consider left side of the equation and then solve it and prove equals to the right side of the equation by using various trigonometric identities such as $\cos 3\theta = 4{\cos ^3}\theta - 3\cos \theta $, $\sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta $ and $\tan (x + y) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}$.
Complete step by step answer:
Here, we have to solve trigonometric functions.
(a) we have $\cos 3\theta - \sin 3\theta = (\cos \theta + \sin \theta )(1 - 2\sin 2\theta )$
Consider left side of the equation i.e., $\cos 3\theta - \sin 3\theta $
We know that $\cos 3\theta = 4{\cos ^3}\theta - 3\cos \theta $ and $\sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta $
Substituting these values, we get,
$ \Rightarrow \cos 3\theta - \sin 3\theta = 4{\cos ^3}\theta - 3\cos \theta - (3\sin \theta - 4{\sin ^3}\theta )$
Rearranging the above equation. We get,
$ \Rightarrow 4{\cos ^3}\theta + 4{\sin ^3}\theta - 3\cos \theta - 3\sin \theta $
The above equation can be written as
$ \Rightarrow 4({\cos ^3}\theta + {\sin ^3}\theta ) - 3(\cos \theta + \sin \theta )$
Now using the formula ${(a + b)^3} = (a + b)({a^2} - ab + {b^2})$. We get,
$ \Rightarrow 4(\cos \theta + \sin \theta )({\cos ^2}\theta - \cos \theta \sin \theta + {\sin ^2}\theta ) - 3(\cos \theta + \sin \theta )$
We know that ${\cos ^2}\theta + {\sin ^2}\theta = 1$. So,
$ \Rightarrow 4(\cos \theta + \sin \theta )(1 - \cos \theta \sin \theta ) - 3(\cos \theta + \sin \theta )$
Taking common $(\cos \theta + \sin \theta )$ from the above equation. We get,
$ \Rightarrow (\cos \theta + \sin \theta )[4(1 - \cos \theta \sin \theta ) - 3]$
Solving the above equation. We get,
$ \Rightarrow (\cos \theta + \sin \theta )(4 - 4\cos \theta \sin \theta - 3)$
$ \Rightarrow (\cos \theta + \sin \theta )(1 - 4\cos \theta \sin \theta )$
We can write $4\cos \theta \sin \theta $ as $2 \times 2\cos \theta \sin \theta $. So,
$ \Rightarrow (\cos \theta + \sin \theta )(1 - 2 \times 2\cos \theta \sin \theta )$
We know that $2\cos \theta \sin \theta = \sin 2\theta $. So,
$ \Rightarrow (\cos \theta + \sin \theta )(1 - 2\sin 2\theta )$
Therefore, the left side of the equation is equal to the right side of the equation.
Hence proved
(b) We have $\tan A = \dfrac{5}{6}$ and $\tan B = \dfrac{1}{{11}}$ and we have to show that $A + B = \dfrac{\pi }{4}$ or $\dfrac{{5\pi }}{4}$
Using trigonometric identity $\tan (x + y) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}$
We have,
$\tan (A + B) = \dfrac{{\dfrac{5}{6} + \dfrac{1}{{11}}}}{{1 - \dfrac{5}{6} \times \dfrac{1}{{11}}}}$
Simplifying the above equation. We get,
$ \Rightarrow \tan (A + B) = \dfrac{{\dfrac{{55 + 6}}{{66}}}}{{1 - \dfrac{5}{{66}}}}$
On further solving we get,
$ \Rightarrow \tan (A + B) = \dfrac{{\dfrac{{55 + 6}}{{66}}}}{{\dfrac{{66 - 5}}{{66}}}}$
$ \Rightarrow \tan (A + B) = \dfrac{{\dfrac{{61}}{{66}}}}{{\dfrac{{61}}{{66}}}}$
On dividing we get,
$ \Rightarrow \tan (A + B) = \dfrac{{61}}{{66}} \times \dfrac{{66}}{{61}}$
$ \Rightarrow \tan (A + B) = 1$
Shifting $\tan $ to the right side of the equation. We get,
$ \Rightarrow (A + B) = {\tan ^{ - 1}}1$
We know that ${\tan ^{ - 1}}1 = \dfrac{\pi }{4}$.
$ \Rightarrow (A + B) = \dfrac{\pi }{4}$
Therefore, $(A + B) = \dfrac{\pi }{4}$
Hence, proved.
Note: In order to solve these types of questions in which we have to equal both sides of the equation, first check by solving which side of the equation we can get our desired result. One should remember all trigonometric formulas before solving these types of problems. Note that some students are confused in algebraic identity ${(a + b)^3} = (a + b)({a^2} - ab + {b^2})$ there is a subtraction sign also in this identity.
Complete step by step answer:
Here, we have to solve trigonometric functions.
(a) we have $\cos 3\theta - \sin 3\theta = (\cos \theta + \sin \theta )(1 - 2\sin 2\theta )$
Consider left side of the equation i.e., $\cos 3\theta - \sin 3\theta $
We know that $\cos 3\theta = 4{\cos ^3}\theta - 3\cos \theta $ and $\sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta $
Substituting these values, we get,
$ \Rightarrow \cos 3\theta - \sin 3\theta = 4{\cos ^3}\theta - 3\cos \theta - (3\sin \theta - 4{\sin ^3}\theta )$
Rearranging the above equation. We get,
$ \Rightarrow 4{\cos ^3}\theta + 4{\sin ^3}\theta - 3\cos \theta - 3\sin \theta $
The above equation can be written as
$ \Rightarrow 4({\cos ^3}\theta + {\sin ^3}\theta ) - 3(\cos \theta + \sin \theta )$
Now using the formula ${(a + b)^3} = (a + b)({a^2} - ab + {b^2})$. We get,
$ \Rightarrow 4(\cos \theta + \sin \theta )({\cos ^2}\theta - \cos \theta \sin \theta + {\sin ^2}\theta ) - 3(\cos \theta + \sin \theta )$
We know that ${\cos ^2}\theta + {\sin ^2}\theta = 1$. So,
$ \Rightarrow 4(\cos \theta + \sin \theta )(1 - \cos \theta \sin \theta ) - 3(\cos \theta + \sin \theta )$
Taking common $(\cos \theta + \sin \theta )$ from the above equation. We get,
$ \Rightarrow (\cos \theta + \sin \theta )[4(1 - \cos \theta \sin \theta ) - 3]$
Solving the above equation. We get,
$ \Rightarrow (\cos \theta + \sin \theta )(4 - 4\cos \theta \sin \theta - 3)$
$ \Rightarrow (\cos \theta + \sin \theta )(1 - 4\cos \theta \sin \theta )$
We can write $4\cos \theta \sin \theta $ as $2 \times 2\cos \theta \sin \theta $. So,
$ \Rightarrow (\cos \theta + \sin \theta )(1 - 2 \times 2\cos \theta \sin \theta )$
We know that $2\cos \theta \sin \theta = \sin 2\theta $. So,
$ \Rightarrow (\cos \theta + \sin \theta )(1 - 2\sin 2\theta )$
Therefore, the left side of the equation is equal to the right side of the equation.
Hence proved
(b) We have $\tan A = \dfrac{5}{6}$ and $\tan B = \dfrac{1}{{11}}$ and we have to show that $A + B = \dfrac{\pi }{4}$ or $\dfrac{{5\pi }}{4}$
Using trigonometric identity $\tan (x + y) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}$
We have,
$\tan (A + B) = \dfrac{{\dfrac{5}{6} + \dfrac{1}{{11}}}}{{1 - \dfrac{5}{6} \times \dfrac{1}{{11}}}}$
Simplifying the above equation. We get,
$ \Rightarrow \tan (A + B) = \dfrac{{\dfrac{{55 + 6}}{{66}}}}{{1 - \dfrac{5}{{66}}}}$
On further solving we get,
$ \Rightarrow \tan (A + B) = \dfrac{{\dfrac{{55 + 6}}{{66}}}}{{\dfrac{{66 - 5}}{{66}}}}$
$ \Rightarrow \tan (A + B) = \dfrac{{\dfrac{{61}}{{66}}}}{{\dfrac{{61}}{{66}}}}$
On dividing we get,
$ \Rightarrow \tan (A + B) = \dfrac{{61}}{{66}} \times \dfrac{{66}}{{61}}$
$ \Rightarrow \tan (A + B) = 1$
Shifting $\tan $ to the right side of the equation. We get,
$ \Rightarrow (A + B) = {\tan ^{ - 1}}1$
We know that ${\tan ^{ - 1}}1 = \dfrac{\pi }{4}$.
$ \Rightarrow (A + B) = \dfrac{\pi }{4}$
Therefore, $(A + B) = \dfrac{\pi }{4}$
Hence, proved.
Note: In order to solve these types of questions in which we have to equal both sides of the equation, first check by solving which side of the equation we can get our desired result. One should remember all trigonometric formulas before solving these types of problems. Note that some students are confused in algebraic identity ${(a + b)^3} = (a + b)({a^2} - ab + {b^2})$ there is a subtraction sign also in this identity.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

