
A simple pendulum of length $1m$ is oscillating with an angular frequency $10rad/s$ . The support of the pendulum starts oscillating up and down with a small angular frequency of $1rad/s$ and an amplitude of ${{10}^{-2}}m$ .The relative change in the angular frequency of the pendulum is best given by ?
Answer
431.1k+ views
Hint: Since the support of the pendulum is also oscillating up and down with a small angular frequency, the net gravitational force on the pendulum block will change from $g$ to ${{g}_{eff}}$ . Thus, we will apply the concept of relative change for a variable to calculate the relative change in frequency of the pendulum.
Complete answer:
We know,
$\Rightarrow \omega =\sqrt{\dfrac{{{g}_{eff}}}{l}}$
Taking log to the base e on both sides, our equation becomes:
$\Rightarrow \ln (\omega )=\dfrac{1}{2}\left[ \ln ({{g}_{eff}})-\ln (l) \right]$
On differentiating both sides, we get:
$\Rightarrow \dfrac{d\omega }{\omega }=\dfrac{1}{2}\dfrac{d{{g}_{eff}}}{{{g}_{eff}}}-\dfrac{1}{2}\dfrac{dl}{l}$
Since, there is no change in the length of pendulum, the term: $\dfrac{dl}{l}=0$
Therefore, our final equation is:
$\Rightarrow \dfrac{d\omega }{\omega }=\dfrac{1}{2}\dfrac{d{{g}_{eff}}}{{{g}_{eff}}}$
For a finite change, this can be written as:
$\Rightarrow \dfrac{\vartriangle \omega }{\omega }=\dfrac{1}{2}\dfrac{\vartriangle {{g}_{eff}}}{{{g}_{eff}}}$ [Let this be equation number 1]
Now in the above equation, it is given:
$\Rightarrow \omega =10rad/s$
$\Rightarrow {{g}_{eff}}=g$
And $\vartriangle {{g}_{eff}}$ can be calculated as follows:
Since, the support is also oscillating it will exert a centrifugal force on the pendulum. Therefore,
The net change in ${{g}_{eff}}$ will be:
$\begin{align}
& \Rightarrow \vartriangle {{g}_{eff}}={{\omega }_{s}}^{2}A-(-{{\omega }_{s}}^{2}A) \\
& \Rightarrow \vartriangle {{g}_{eff}}=2{{\omega }_{s}}^{2}A \\
\end{align}$
Where,
${{\omega }_{s}}$ is the angular frequency of the support
$A$ is the amplitude of support
And the value of these terms is given as:
$\begin{align}
& \Rightarrow {{\omega }_{s}}=1rad/s \\
& \Rightarrow A={{10}^{-2}}m \\
\end{align}$
Therefore,
$\begin{align}
& \Rightarrow \vartriangle {{g}_{eff}}=2\times {{(1)}^{2}}\times {{10}^{-2}} \\
& \Rightarrow \vartriangle {{g}_{eff}}=2\times {{10}^{-2}}m/{{s}^{2}} \\
\end{align}$
Now, putting the values of $\omega ,{{g}_{eff}}$ and $\vartriangle {{g}_{eff}}$ in equation number (1), we get:
Relative change in angular frequency:
$\begin{align}
& \Rightarrow \dfrac{\vartriangle \omega }{\omega }=\dfrac{1}{2}\left( \dfrac{2\times {{10}^{-2}}}{10} \right) \\
& \Rightarrow \dfrac{\vartriangle \omega }{\omega }={{10}^{-3}} \\
\end{align}$
Hence, the relative change in angular frequency comes out to be ${{10}^{-3}}$ .
Note:
While calculating relative change, all the terms inside the logarithmic are opened as it is, i.e., positive terms are positive and negative terms are negative. But, when calculating for “Errors”, all the terms should be taken positively as we should always find the maximum possible error. Also, relative change is a dimensionless quantity.
Complete answer:
We know,
$\Rightarrow \omega =\sqrt{\dfrac{{{g}_{eff}}}{l}}$
Taking log to the base e on both sides, our equation becomes:
$\Rightarrow \ln (\omega )=\dfrac{1}{2}\left[ \ln ({{g}_{eff}})-\ln (l) \right]$
On differentiating both sides, we get:
$\Rightarrow \dfrac{d\omega }{\omega }=\dfrac{1}{2}\dfrac{d{{g}_{eff}}}{{{g}_{eff}}}-\dfrac{1}{2}\dfrac{dl}{l}$
Since, there is no change in the length of pendulum, the term: $\dfrac{dl}{l}=0$
Therefore, our final equation is:
$\Rightarrow \dfrac{d\omega }{\omega }=\dfrac{1}{2}\dfrac{d{{g}_{eff}}}{{{g}_{eff}}}$
For a finite change, this can be written as:
$\Rightarrow \dfrac{\vartriangle \omega }{\omega }=\dfrac{1}{2}\dfrac{\vartriangle {{g}_{eff}}}{{{g}_{eff}}}$ [Let this be equation number 1]
Now in the above equation, it is given:
$\Rightarrow \omega =10rad/s$
$\Rightarrow {{g}_{eff}}=g$
And $\vartriangle {{g}_{eff}}$ can be calculated as follows:
Since, the support is also oscillating it will exert a centrifugal force on the pendulum. Therefore,
The net change in ${{g}_{eff}}$ will be:
$\begin{align}
& \Rightarrow \vartriangle {{g}_{eff}}={{\omega }_{s}}^{2}A-(-{{\omega }_{s}}^{2}A) \\
& \Rightarrow \vartriangle {{g}_{eff}}=2{{\omega }_{s}}^{2}A \\
\end{align}$
Where,
${{\omega }_{s}}$ is the angular frequency of the support
$A$ is the amplitude of support
And the value of these terms is given as:
$\begin{align}
& \Rightarrow {{\omega }_{s}}=1rad/s \\
& \Rightarrow A={{10}^{-2}}m \\
\end{align}$
Therefore,
$\begin{align}
& \Rightarrow \vartriangle {{g}_{eff}}=2\times {{(1)}^{2}}\times {{10}^{-2}} \\
& \Rightarrow \vartriangle {{g}_{eff}}=2\times {{10}^{-2}}m/{{s}^{2}} \\
\end{align}$
Now, putting the values of $\omega ,{{g}_{eff}}$ and $\vartriangle {{g}_{eff}}$ in equation number (1), we get:
Relative change in angular frequency:
$\begin{align}
& \Rightarrow \dfrac{\vartriangle \omega }{\omega }=\dfrac{1}{2}\left( \dfrac{2\times {{10}^{-2}}}{10} \right) \\
& \Rightarrow \dfrac{\vartriangle \omega }{\omega }={{10}^{-3}} \\
\end{align}$
Hence, the relative change in angular frequency comes out to be ${{10}^{-3}}$ .
Note:
While calculating relative change, all the terms inside the logarithmic are opened as it is, i.e., positive terms are positive and negative terms are negative. But, when calculating for “Errors”, all the terms should be taken positively as we should always find the maximum possible error. Also, relative change is a dimensionless quantity.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
