Answer
Verified
447k+ views
Hint: A simple pendulum is a mass (say \[m\] ) hung by a string of length (say \[L\] ). So, the time period of the pendulum is given by the equation $T = 2\pi \sqrt {\dfrac{L}{g}} $ and the equation for the simple harmonic motion of a simple pendulum is $A = {A_0}\cos \left( {\omega t + \phi } \right)$ .
Complete answer:
A simple pendulum consists of a mass $m$ hanging from a string of length $L$ and is fixed at a pivot point. When this pendulum is displaced from its rest position to an initial angle and released, the pendulum will swing to and fro with periodic motion.
While the equation is not in the rest position a restoring force acts on the simple pendulum which tries to restore the pendulum to its rest position.
The restoring force is given by the following equation
$F = - mg\sin \theta $
The negative sign indicates that the force acts in a direction opposite to the movement of the pendulum.
If the displacement of the pendulum is small, then $\sin \theta = \theta $
$F \approx - mg\theta $
We know that the angle that the arc makes at the pivot point is equal to
$\theta = \dfrac{s}{L}$
$\theta = $ The angle that the pendulum makes at the pivot pointS
$s = $ Displacement of the pendulum
$L = $ Length of the pendulum string
So, $F \approx - mg\dfrac{s}{L}$ (Equation 1)
We also know that the equation for restoring force for rotational motion is
$F = - k\theta $ (Equation 2)
Here, $x = $ Force constant
Comparing equation 1 and 2, we get
$ - mg\theta = - kx$
$k = \dfrac{{mg}}{L}$
We know that the equation for the time period of a pendulum is
$T = 2\pi \sqrt {\dfrac{m}{k}} $
Here, $T = $ The time period
$m = $ Mass
$k = $ Force constant
So, for a simple pendulum, this equation becomes
$T = 2\pi \sqrt {\dfrac{m}{{\dfrac{{mg}}{L}}}} $
$T = 2\pi \sqrt {\dfrac{L}{g}} $
The simple pendulum has a simple harmonic motion and the equation for a simple harmonic motion for a simple pendulum is
$A = {A_0}\cos \left( {\omega t + \phi } \right)$
Here, $A = $ The amplitude at time $t$
\[{A_0} = \] Maximum amplitude
\[\omega = \] Angular frequency
\[\phi = \] Phase
Note:
The equation for the time period that we obtained, i.e. $T = 2\pi \sqrt {\dfrac{L}{g}} $ gives us a very interesting result. By this equation, we see that the time period of a simple pendulum only depends on the length of the string and the gravity. So, if we measure the time period and length of the string precisely, we can calculate the gravity of a planet.
Complete answer:
A simple pendulum consists of a mass $m$ hanging from a string of length $L$ and is fixed at a pivot point. When this pendulum is displaced from its rest position to an initial angle and released, the pendulum will swing to and fro with periodic motion.
While the equation is not in the rest position a restoring force acts on the simple pendulum which tries to restore the pendulum to its rest position.
The restoring force is given by the following equation
$F = - mg\sin \theta $
The negative sign indicates that the force acts in a direction opposite to the movement of the pendulum.
If the displacement of the pendulum is small, then $\sin \theta = \theta $
$F \approx - mg\theta $
We know that the angle that the arc makes at the pivot point is equal to
$\theta = \dfrac{s}{L}$
$\theta = $ The angle that the pendulum makes at the pivot pointS
$s = $ Displacement of the pendulum
$L = $ Length of the pendulum string
So, $F \approx - mg\dfrac{s}{L}$ (Equation 1)
We also know that the equation for restoring force for rotational motion is
$F = - k\theta $ (Equation 2)
Here, $x = $ Force constant
Comparing equation 1 and 2, we get
$ - mg\theta = - kx$
$k = \dfrac{{mg}}{L}$
We know that the equation for the time period of a pendulum is
$T = 2\pi \sqrt {\dfrac{m}{k}} $
Here, $T = $ The time period
$m = $ Mass
$k = $ Force constant
So, for a simple pendulum, this equation becomes
$T = 2\pi \sqrt {\dfrac{m}{{\dfrac{{mg}}{L}}}} $
$T = 2\pi \sqrt {\dfrac{L}{g}} $
The simple pendulum has a simple harmonic motion and the equation for a simple harmonic motion for a simple pendulum is
$A = {A_0}\cos \left( {\omega t + \phi } \right)$
Here, $A = $ The amplitude at time $t$
\[{A_0} = \] Maximum amplitude
\[\omega = \] Angular frequency
\[\phi = \] Phase
Note:
The equation for the time period that we obtained, i.e. $T = 2\pi \sqrt {\dfrac{L}{g}} $ gives us a very interesting result. By this equation, we see that the time period of a simple pendulum only depends on the length of the string and the gravity. So, if we measure the time period and length of the string precisely, we can calculate the gravity of a planet.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Find the value of the expression given below sin 30circ class 11 maths CBSE
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
What is BLO What is the full form of BLO class 8 social science CBSE