Answer
Verified
468.6k+ views
Hint: We know that if p is the single discount of discount series of \[{{x}_{1}},{{x}_{2}},......,{{x}_{n}}\]., then \[p=\left( 1-\prod\limits_{i=1}^{n}{\left( \dfrac{100-{{x}_{i}}}{100} \right)} \right)\times 100\]. From the question, it is given to find the single discount of the discount series of \[10\%\] and \[20\%\]. By using the above formula, we can find the single discount of the discount series of \[10\%\] and \[20\%\].
Complete step-by-step answer:
Before solving the question, we should know that if p is the single discount of discount series of \[{{x}_{1}},{{x}_{2}},......,{{x}_{n}}\]., then \[p=\left( 1-\prod\limits_{i=1}^{n}{\left( \dfrac{100-{{x}_{i}}}{100} \right)} \right)\times 100\].
Now by using this formula, we can find the single discount of a certain discount series.
From the question, it is clear that we have to find the discount series of \[10\%\] and \[20\%\].
We know that if p is the single discount of discount series of \[{{x}_{1}},{{x}_{2}},......,{{x}_{n}}\]., then\[p=\left( 1-\prod\limits_{i=1}^{n}{\left( \dfrac{100-{{x}_{i}}}{100} \right)} \right)\times 100\].
So, we get
\[\begin{align}
& \Rightarrow p=\left( 1-\left( \dfrac{100-10}{100} \right)\left( \dfrac{100-20}{100} \right) \right)\times 100 \\
& \Rightarrow p=\left( 1-\left( \dfrac{90}{100} \right)\left( \dfrac{80}{100} \right) \right)\times 100 \\
& \Rightarrow p=\left( 1-\dfrac{72}{100} \right)\times 100 \\
& \Rightarrow p=\left( \dfrac{100-72}{100} \right)\times 100 \\
& \Rightarrow p=\left( \dfrac{28}{100} \right)\times 100 \\
& \Rightarrow p=28.....(1) \\
\end{align}\]
From equation (1), it is clear that the value of p is equal to 28. So, we can say that a single discount is equal to the discount series of \[10\%\] and \[20\%\] is \[28\%\].
So, the correct answer is “Option D”.
Note: Students may have a misconception that if p is the single discount of discount series of \[{{x}_{1}},{{x}_{2}},......,{{x}_{n}}\]., then \[p=\left( \prod\limits_{i=1}^{n}{\left( \dfrac{100-{{x}_{i}}}{100} \right)} \right)\times 100\]. If this misconception is followed, then we get
\[\begin{align}
& \Rightarrow p=\left( \left( \dfrac{100-10}{100} \right)\left( \dfrac{100-20}{100} \right) \right)\times 100 \\
& \Rightarrow p=\left( \left( \dfrac{90}{100} \right)\left( \dfrac{80}{100} \right) \right)\times 100 \\
& \Rightarrow p=\left( \dfrac{72}{100} \right)\times 100 \\
& \Rightarrow p=72.....(1) \\
\end{align}\]
From equation (1), it is clear that the value of p is equal to 28. So, we can say that a single discount is equal to the discount series of \[10\%\] and \[20\%\] is \[72\%\]. But we know that the single discount is equal to \[28\%\]. So, this misconception should get avoided.
Complete step-by-step answer:
Before solving the question, we should know that if p is the single discount of discount series of \[{{x}_{1}},{{x}_{2}},......,{{x}_{n}}\]., then \[p=\left( 1-\prod\limits_{i=1}^{n}{\left( \dfrac{100-{{x}_{i}}}{100} \right)} \right)\times 100\].
Now by using this formula, we can find the single discount of a certain discount series.
From the question, it is clear that we have to find the discount series of \[10\%\] and \[20\%\].
We know that if p is the single discount of discount series of \[{{x}_{1}},{{x}_{2}},......,{{x}_{n}}\]., then\[p=\left( 1-\prod\limits_{i=1}^{n}{\left( \dfrac{100-{{x}_{i}}}{100} \right)} \right)\times 100\].
So, we get
\[\begin{align}
& \Rightarrow p=\left( 1-\left( \dfrac{100-10}{100} \right)\left( \dfrac{100-20}{100} \right) \right)\times 100 \\
& \Rightarrow p=\left( 1-\left( \dfrac{90}{100} \right)\left( \dfrac{80}{100} \right) \right)\times 100 \\
& \Rightarrow p=\left( 1-\dfrac{72}{100} \right)\times 100 \\
& \Rightarrow p=\left( \dfrac{100-72}{100} \right)\times 100 \\
& \Rightarrow p=\left( \dfrac{28}{100} \right)\times 100 \\
& \Rightarrow p=28.....(1) \\
\end{align}\]
From equation (1), it is clear that the value of p is equal to 28. So, we can say that a single discount is equal to the discount series of \[10\%\] and \[20\%\] is \[28\%\].
So, the correct answer is “Option D”.
Note: Students may have a misconception that if p is the single discount of discount series of \[{{x}_{1}},{{x}_{2}},......,{{x}_{n}}\]., then \[p=\left( \prod\limits_{i=1}^{n}{\left( \dfrac{100-{{x}_{i}}}{100} \right)} \right)\times 100\]. If this misconception is followed, then we get
\[\begin{align}
& \Rightarrow p=\left( \left( \dfrac{100-10}{100} \right)\left( \dfrac{100-20}{100} \right) \right)\times 100 \\
& \Rightarrow p=\left( \left( \dfrac{90}{100} \right)\left( \dfrac{80}{100} \right) \right)\times 100 \\
& \Rightarrow p=\left( \dfrac{72}{100} \right)\times 100 \\
& \Rightarrow p=72.....(1) \\
\end{align}\]
From equation (1), it is clear that the value of p is equal to 28. So, we can say that a single discount is equal to the discount series of \[10\%\] and \[20\%\] is \[72\%\]. But we know that the single discount is equal to \[28\%\]. So, this misconception should get avoided.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers