
A single discount is equal to discount series of \[10\%\] and \[20\%\] is
\[\begin{align}
& \text{A}\text{. 25 }\!\!\%\!\!\text{ } \\
& \text{B}\text{. 30 }\!\!\%\!\!\text{ } \\
& \text{C}\text{. 35 }\!\!\%\!\!\text{ } \\
& \text{D}\text{. 28 }\!\!\%\!\!\text{ } \\
\end{align}\]
Answer
493.2k+ views
Hint: We know that if p is the single discount of discount series of \[{{x}_{1}},{{x}_{2}},......,{{x}_{n}}\]., then \[p=\left( 1-\prod\limits_{i=1}^{n}{\left( \dfrac{100-{{x}_{i}}}{100} \right)} \right)\times 100\]. From the question, it is given to find the single discount of the discount series of \[10\%\] and \[20\%\]. By using the above formula, we can find the single discount of the discount series of \[10\%\] and \[20\%\].
Complete step-by-step answer:
Before solving the question, we should know that if p is the single discount of discount series of \[{{x}_{1}},{{x}_{2}},......,{{x}_{n}}\]., then \[p=\left( 1-\prod\limits_{i=1}^{n}{\left( \dfrac{100-{{x}_{i}}}{100} \right)} \right)\times 100\].
Now by using this formula, we can find the single discount of a certain discount series.
From the question, it is clear that we have to find the discount series of \[10\%\] and \[20\%\].
We know that if p is the single discount of discount series of \[{{x}_{1}},{{x}_{2}},......,{{x}_{n}}\]., then\[p=\left( 1-\prod\limits_{i=1}^{n}{\left( \dfrac{100-{{x}_{i}}}{100} \right)} \right)\times 100\].
So, we get
\[\begin{align}
& \Rightarrow p=\left( 1-\left( \dfrac{100-10}{100} \right)\left( \dfrac{100-20}{100} \right) \right)\times 100 \\
& \Rightarrow p=\left( 1-\left( \dfrac{90}{100} \right)\left( \dfrac{80}{100} \right) \right)\times 100 \\
& \Rightarrow p=\left( 1-\dfrac{72}{100} \right)\times 100 \\
& \Rightarrow p=\left( \dfrac{100-72}{100} \right)\times 100 \\
& \Rightarrow p=\left( \dfrac{28}{100} \right)\times 100 \\
& \Rightarrow p=28.....(1) \\
\end{align}\]
From equation (1), it is clear that the value of p is equal to 28. So, we can say that a single discount is equal to the discount series of \[10\%\] and \[20\%\] is \[28\%\].
So, the correct answer is “Option D”.
Note: Students may have a misconception that if p is the single discount of discount series of \[{{x}_{1}},{{x}_{2}},......,{{x}_{n}}\]., then \[p=\left( \prod\limits_{i=1}^{n}{\left( \dfrac{100-{{x}_{i}}}{100} \right)} \right)\times 100\]. If this misconception is followed, then we get
\[\begin{align}
& \Rightarrow p=\left( \left( \dfrac{100-10}{100} \right)\left( \dfrac{100-20}{100} \right) \right)\times 100 \\
& \Rightarrow p=\left( \left( \dfrac{90}{100} \right)\left( \dfrac{80}{100} \right) \right)\times 100 \\
& \Rightarrow p=\left( \dfrac{72}{100} \right)\times 100 \\
& \Rightarrow p=72.....(1) \\
\end{align}\]
From equation (1), it is clear that the value of p is equal to 28. So, we can say that a single discount is equal to the discount series of \[10\%\] and \[20\%\] is \[72\%\]. But we know that the single discount is equal to \[28\%\]. So, this misconception should get avoided.
Complete step-by-step answer:
Before solving the question, we should know that if p is the single discount of discount series of \[{{x}_{1}},{{x}_{2}},......,{{x}_{n}}\]., then \[p=\left( 1-\prod\limits_{i=1}^{n}{\left( \dfrac{100-{{x}_{i}}}{100} \right)} \right)\times 100\].
Now by using this formula, we can find the single discount of a certain discount series.
From the question, it is clear that we have to find the discount series of \[10\%\] and \[20\%\].
We know that if p is the single discount of discount series of \[{{x}_{1}},{{x}_{2}},......,{{x}_{n}}\]., then\[p=\left( 1-\prod\limits_{i=1}^{n}{\left( \dfrac{100-{{x}_{i}}}{100} \right)} \right)\times 100\].
So, we get
\[\begin{align}
& \Rightarrow p=\left( 1-\left( \dfrac{100-10}{100} \right)\left( \dfrac{100-20}{100} \right) \right)\times 100 \\
& \Rightarrow p=\left( 1-\left( \dfrac{90}{100} \right)\left( \dfrac{80}{100} \right) \right)\times 100 \\
& \Rightarrow p=\left( 1-\dfrac{72}{100} \right)\times 100 \\
& \Rightarrow p=\left( \dfrac{100-72}{100} \right)\times 100 \\
& \Rightarrow p=\left( \dfrac{28}{100} \right)\times 100 \\
& \Rightarrow p=28.....(1) \\
\end{align}\]
From equation (1), it is clear that the value of p is equal to 28. So, we can say that a single discount is equal to the discount series of \[10\%\] and \[20\%\] is \[28\%\].
So, the correct answer is “Option D”.
Note: Students may have a misconception that if p is the single discount of discount series of \[{{x}_{1}},{{x}_{2}},......,{{x}_{n}}\]., then \[p=\left( \prod\limits_{i=1}^{n}{\left( \dfrac{100-{{x}_{i}}}{100} \right)} \right)\times 100\]. If this misconception is followed, then we get
\[\begin{align}
& \Rightarrow p=\left( \left( \dfrac{100-10}{100} \right)\left( \dfrac{100-20}{100} \right) \right)\times 100 \\
& \Rightarrow p=\left( \left( \dfrac{90}{100} \right)\left( \dfrac{80}{100} \right) \right)\times 100 \\
& \Rightarrow p=\left( \dfrac{72}{100} \right)\times 100 \\
& \Rightarrow p=72.....(1) \\
\end{align}\]
From equation (1), it is clear that the value of p is equal to 28. So, we can say that a single discount is equal to the discount series of \[10\%\] and \[20\%\] is \[72\%\]. But we know that the single discount is equal to \[28\%\]. So, this misconception should get avoided.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
On which river Salal project is situated A River Sutlej class 8 social science CBSE

When Sambhaji Maharaj died a 11 February 1689 b 11 class 8 social science CBSE

Explain the system of Dual Government class 8 social science CBSE

What is Kayal in Geography class 8 social science CBSE

Who is the author of Kadambari AKalidas B Panini C class 8 social science CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
