![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
A sinusoidal wave travelling in the positive direction on stretched string has amplitude \[20\,{\text{cm}}\], wavelength \[{\text{1}}\,{\text{m}}\] and wave velocity \[{\text{5 m}}{{\text{s}}^{ - 1}}\]. At \[x = 0\] and \[t = 0\], it is given that \[y = 0\] and \[\dfrac{{dy}}{{dt}} < 0\]. Find the wave function \[y(x,t)\]
A. \[y(x,t) = \left( {0.2{\text{m}}} \right){\text{sin}}\left[ {\left( {{\text{2}}\pi {{\text{m}}^{ - 1}}} \right)x + \left( {10\pi {{\text{s}}^{ - 1}}} \right)t} \right]{\text{m}}\]
B. \[y(x,t) = \left( {0.2{\text{m}}} \right)\cos \left[ {\left( {10\pi {{\text{s}}^{ - 1}}} \right)t + \left( {2\pi {{\text{m}}^{ - 1}}} \right)x} \right]{\text{m}}\]
C. \[y(x,t) = \left( {0.2{\text{m}}} \right)\sin \left[ {\left( {2\pi {{\text{m}}^{ - 1}}} \right)x - \left( {10\pi {{\text{s}}^{ - 1}}} \right)t} \right]{\text{m}}\]
D. \[y(x,t) = \left( {0.2{\text{m}}} \right)\sin \left[ {\left( {\pi {{\text{m}}^{ - 1}}} \right)x + \left( {5\pi {{\text{s}}^{ - 1}}} \right)t} \right]{\text{m}}\]
Answer
454.8k+ views
Hint:To find the wave function, first recall the general equation for a wave. The wave is said to be moving in a positive direction, so apply the general equation for a wave moving in a positive direction. Using the given values find the value of wavenumber and angular frequency and put these values in the general equation. Apply the conditions given in the question to get the required wave function.
Complete step by step answer:
Given, amplitude of the wave, \[A = 20\,{\text{cm}} = 0.2\,{\text{m}}\]
Wavelength of the wave, \[\lambda = 1\,{\text{m}}\]
Velocity of the wave, \[v = {\text{5 m}}{{\text{s}}^{ - 1}}\]
And at \[x = 0\] and \[t = 0\], it has \[y = 0\] and \[\dfrac{{dy}}{{dt}} < 0\].
The general equation for a wave moving in positive x-direction is given by,
\[y(x,t) = A\sin \left( {kx - \omega t + \phi } \right)\] (i)
where \[A\] is the amplitude, \[k\] is the wavenumber, \[\omega \] is the angular frequency and \[\phi \] is the phase of the wave.
The formula for wavenumber of a wave is,
\[k = \dfrac{{2\pi }}{\lambda }\] (ii)
where \[\lambda \] is the wavelength of the wave.
Here, \[\lambda = 1\,{\text{m}}\] so, wavenumber of the wave is,
\[k = \dfrac{{2\pi }}{1}\,{{\text{m}}^{ - 1}}\]
\[ \Rightarrow k = 2\pi \,{{\text{m}}^{ - 1}}\]
The formula for angular frequency of a wave is,
\[\omega = vk\] (iii)
where \[v\] is the velocity and \[k\] is the wavenumber of the wave.
Here, \[v = {\text{5 m}}{{\text{s}}^{ - 1}}\] and \[k = 2\pi \,{{\text{m}}^{ - 1}}\]so, the angular frequency of the wave is,
\[\omega = 5 \times 2\pi \]
\[ \Rightarrow \omega = 10\pi \,{{\text{s}}^{{\text{ - 1}}}}\] (iv)
Now, putting the values of \[A\], \[k\] and \[\omega \] in equation (i), we get
\[y(x,t) = 0.2\sin \left( {2\pi x - 10\pi t + \phi } \right)\] (v)
Now putting the condition \[x = 0\], \[t = 0\] and \[y = 0\], we get
\[0 = 0.2\sin \phi \]
\[ \Rightarrow \sin \phi = 0\]
\[ \Rightarrow \phi = 2\pi n,\,\,\,n = 0,1,2...\]
Now, we differentiate equation (v) with respect to \[t\] to get the value of \[\dfrac{{dy}}{{dt}}\],
\[\dfrac{{dy}}{{dt}} = 0.2\cos \left( {2\pi x - 10\pi t + \phi } \right) \times \left( { - 10\pi } \right)\]
\[ \Rightarrow \dfrac{{dy}}{{dt}} = - 2\pi \cos \left( {2\pi x - 10\pi t + \phi } \right)\]
At \[x = 0\], \[t = 0\], we have,
\[\dfrac{{dy}}{{dt}} = - 2\pi \cos \left( \phi \right)\]
Therefore, it satisfies the condition \[\dfrac{{dy}}{{dt}} < 0\].
Putting the value \[\phi = 0\] in equation (v) we get,
\[y(x,t) = 0.2\sin \left( {2\pi x - 10\pi t} \right)\]
\[ \therefore y(x,t) = \left( {0.2{\text{m}}} \right)\sin \left[ {\left( {2\pi {{\text{m}}^{ - 1}}} \right)x - \left( {10\pi {{\text{s}}^{ - 1}}} \right)t} \right]{\text{m}}\]
The equation matches with option (C).
Hence the correct answer is option C.
Note: Here we have applied the general equation for a wave moving in positive direction but for a wave moving in negative direction the general equation is, \[y(x,t) = A\sin \left( {kx + \omega t + \phi } \right)\]. Also, while solving problems always check that the units are the same, that is all quantities are in SI units or CGS units.
Complete step by step answer:
Given, amplitude of the wave, \[A = 20\,{\text{cm}} = 0.2\,{\text{m}}\]
Wavelength of the wave, \[\lambda = 1\,{\text{m}}\]
Velocity of the wave, \[v = {\text{5 m}}{{\text{s}}^{ - 1}}\]
And at \[x = 0\] and \[t = 0\], it has \[y = 0\] and \[\dfrac{{dy}}{{dt}} < 0\].
The general equation for a wave moving in positive x-direction is given by,
\[y(x,t) = A\sin \left( {kx - \omega t + \phi } \right)\] (i)
where \[A\] is the amplitude, \[k\] is the wavenumber, \[\omega \] is the angular frequency and \[\phi \] is the phase of the wave.
The formula for wavenumber of a wave is,
\[k = \dfrac{{2\pi }}{\lambda }\] (ii)
where \[\lambda \] is the wavelength of the wave.
Here, \[\lambda = 1\,{\text{m}}\] so, wavenumber of the wave is,
\[k = \dfrac{{2\pi }}{1}\,{{\text{m}}^{ - 1}}\]
\[ \Rightarrow k = 2\pi \,{{\text{m}}^{ - 1}}\]
The formula for angular frequency of a wave is,
\[\omega = vk\] (iii)
where \[v\] is the velocity and \[k\] is the wavenumber of the wave.
Here, \[v = {\text{5 m}}{{\text{s}}^{ - 1}}\] and \[k = 2\pi \,{{\text{m}}^{ - 1}}\]so, the angular frequency of the wave is,
\[\omega = 5 \times 2\pi \]
\[ \Rightarrow \omega = 10\pi \,{{\text{s}}^{{\text{ - 1}}}}\] (iv)
Now, putting the values of \[A\], \[k\] and \[\omega \] in equation (i), we get
\[y(x,t) = 0.2\sin \left( {2\pi x - 10\pi t + \phi } \right)\] (v)
Now putting the condition \[x = 0\], \[t = 0\] and \[y = 0\], we get
\[0 = 0.2\sin \phi \]
\[ \Rightarrow \sin \phi = 0\]
\[ \Rightarrow \phi = 2\pi n,\,\,\,n = 0,1,2...\]
Now, we differentiate equation (v) with respect to \[t\] to get the value of \[\dfrac{{dy}}{{dt}}\],
\[\dfrac{{dy}}{{dt}} = 0.2\cos \left( {2\pi x - 10\pi t + \phi } \right) \times \left( { - 10\pi } \right)\]
\[ \Rightarrow \dfrac{{dy}}{{dt}} = - 2\pi \cos \left( {2\pi x - 10\pi t + \phi } \right)\]
At \[x = 0\], \[t = 0\], we have,
\[\dfrac{{dy}}{{dt}} = - 2\pi \cos \left( \phi \right)\]
Therefore, it satisfies the condition \[\dfrac{{dy}}{{dt}} < 0\].
Putting the value \[\phi = 0\] in equation (v) we get,
\[y(x,t) = 0.2\sin \left( {2\pi x - 10\pi t} \right)\]
\[ \therefore y(x,t) = \left( {0.2{\text{m}}} \right)\sin \left[ {\left( {2\pi {{\text{m}}^{ - 1}}} \right)x - \left( {10\pi {{\text{s}}^{ - 1}}} \right)t} \right]{\text{m}}\]
The equation matches with option (C).
Hence the correct answer is option C.
Note: Here we have applied the general equation for a wave moving in positive direction but for a wave moving in negative direction the general equation is, \[y(x,t) = A\sin \left( {kx + \omega t + \phi } \right)\]. Also, while solving problems always check that the units are the same, that is all quantities are in SI units or CGS units.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the value of x if the mode of the following data class 11 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
10 examples of friction in our daily life
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Prokaryotic Cells and Eukaryotic Cells
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State and prove Bernoullis theorem class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How many valence electrons does nitrogen have class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)