Answer
Verified
459k+ views
Hint
We should know that viscous force is considered to be directly proportional to the rate at which the fluid velocity is changing in the space. It is defined as the measure of the fluid’s resistance to flow. Based on this concept we have to solve this concept.
Complete step by step answer
A small sphere of radius $ r $ falls from rest in a viscous liquid. As a result, heat is produced due to viscous force. The rate of production of heat when the sphere attains its terminal velocity is proportional to
Let $ r $ is the radius of the sphere and $ {v_t} $ is its terminal speed. Then the weight of sphere is balanced by the buoyant force and viscous force such that:
Weight,
$ w = mg $
$ \because p = \dfrac{m}{V} $
$ m = \dfrac{4}{3}\pi {r^3}\;pg.....(1) $
So,
$ w = \dfrac{4}{3}\pi {r^3}p $
Buoyant force,
$ {F_B} = \dfrac{4}{3}\pi {r^3}\;\sigma g.....(2) $
Where $ \sigma $ is density of water.
Viscous force, F = $ 6\pi \eta rvt......(3) $
Where, $ \eta \;is $ viscosity.
From equation (1) (2) and (3)
$ w = {F_B} + {F_V} $
$ \dfrac{4}{3}\pi {r^3}pg = \dfrac{4}{3}\pi {r^3}\sigma g + 6\pi \eta rvt $
$ {V_t} = \dfrac{2}{9}\dfrac{{{r^2}(p - \sigma )g}}{\eta }........(4) $
The rate of production of heat when the sphere attains its terminal velocity is equal to work done by the viscous forces.
$ W = \dfrac{{dQ}}{{dt}} = {F_V} \times {V_t} $
$ W = 6\pi \eta r{v_t}^2 $
$ W = 6\pi \eta r{\left( {\dfrac{2}{9}\dfrac{{\left( {p - \sigma } \right)g}}{\eta }} \right)^2} $
$ \dfrac{{dQ}}{{dt}} \propto {r^5} $
Hence, the correct answer is Option (A).
Note
We should know when an object will float if the buoyancy force exerted on it by the fluid balances its weight. But from the Archimedes principle we get an idea that the buoyant force is the weight of the fluid displaced. So, in this case for a floating object on a liquid, the weight of the displaced liquid is the weight of the object.
We should know that viscous force is considered to be directly proportional to the rate at which the fluid velocity is changing in the space. It is defined as the measure of the fluid’s resistance to flow. Based on this concept we have to solve this concept.
Complete step by step answer
A small sphere of radius $ r $ falls from rest in a viscous liquid. As a result, heat is produced due to viscous force. The rate of production of heat when the sphere attains its terminal velocity is proportional to
Let $ r $ is the radius of the sphere and $ {v_t} $ is its terminal speed. Then the weight of sphere is balanced by the buoyant force and viscous force such that:
Weight,
$ w = mg $
$ \because p = \dfrac{m}{V} $
$ m = \dfrac{4}{3}\pi {r^3}\;pg.....(1) $
So,
$ w = \dfrac{4}{3}\pi {r^3}p $
Buoyant force,
$ {F_B} = \dfrac{4}{3}\pi {r^3}\;\sigma g.....(2) $
Where $ \sigma $ is density of water.
Viscous force, F = $ 6\pi \eta rvt......(3) $
Where, $ \eta \;is $ viscosity.
From equation (1) (2) and (3)
$ w = {F_B} + {F_V} $
$ \dfrac{4}{3}\pi {r^3}pg = \dfrac{4}{3}\pi {r^3}\sigma g + 6\pi \eta rvt $
$ {V_t} = \dfrac{2}{9}\dfrac{{{r^2}(p - \sigma )g}}{\eta }........(4) $
The rate of production of heat when the sphere attains its terminal velocity is equal to work done by the viscous forces.
$ W = \dfrac{{dQ}}{{dt}} = {F_V} \times {V_t} $
$ W = 6\pi \eta r{v_t}^2 $
$ W = 6\pi \eta r{\left( {\dfrac{2}{9}\dfrac{{\left( {p - \sigma } \right)g}}{\eta }} \right)^2} $
$ \dfrac{{dQ}}{{dt}} \propto {r^5} $
Hence, the correct answer is Option (A).
Note
We should know when an object will float if the buoyancy force exerted on it by the fluid balances its weight. But from the Archimedes principle we get an idea that the buoyant force is the weight of the fluid displaced. So, in this case for a floating object on a liquid, the weight of the displaced liquid is the weight of the object.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE