
A small sphere of radius $ r $ , falls from rest in a viscous liquid. As a result, heat is produced due to viscous force. The rate of production of heat when the sphere attains its terminal velocity, is proportional to
(A) $ {r^5} $
(B) $ {r^3} $
(C) $ {r^4} $
(D) $ {r^2} $
Answer
483.9k+ views
Hint
We should know that viscous force is considered to be directly proportional to the rate at which the fluid velocity is changing in the space. It is defined as the measure of the fluid’s resistance to flow. Based on this concept we have to solve this concept.
Complete step by step answer
A small sphere of radius $ r $ falls from rest in a viscous liquid. As a result, heat is produced due to viscous force. The rate of production of heat when the sphere attains its terminal velocity is proportional to
Let $ r $ is the radius of the sphere and $ {v_t} $ is its terminal speed. Then the weight of sphere is balanced by the buoyant force and viscous force such that:
Weight,
$ w = mg $
$ \because p = \dfrac{m}{V} $
$ m = \dfrac{4}{3}\pi {r^3}\;pg.....(1) $
So,
$ w = \dfrac{4}{3}\pi {r^3}p $
Buoyant force,
$ {F_B} = \dfrac{4}{3}\pi {r^3}\;\sigma g.....(2) $
Where $ \sigma $ is density of water.
Viscous force, F = $ 6\pi \eta rvt......(3) $
Where, $ \eta \;is $ viscosity.
From equation (1) (2) and (3)
$ w = {F_B} + {F_V} $
$ \dfrac{4}{3}\pi {r^3}pg = \dfrac{4}{3}\pi {r^3}\sigma g + 6\pi \eta rvt $
$ {V_t} = \dfrac{2}{9}\dfrac{{{r^2}(p - \sigma )g}}{\eta }........(4) $
The rate of production of heat when the sphere attains its terminal velocity is equal to work done by the viscous forces.
$ W = \dfrac{{dQ}}{{dt}} = {F_V} \times {V_t} $
$ W = 6\pi \eta r{v_t}^2 $
$ W = 6\pi \eta r{\left( {\dfrac{2}{9}\dfrac{{\left( {p - \sigma } \right)g}}{\eta }} \right)^2} $
$ \dfrac{{dQ}}{{dt}} \propto {r^5} $
Hence, the correct answer is Option (A).
Note
We should know when an object will float if the buoyancy force exerted on it by the fluid balances its weight. But from the Archimedes principle we get an idea that the buoyant force is the weight of the fluid displaced. So, in this case for a floating object on a liquid, the weight of the displaced liquid is the weight of the object.
We should know that viscous force is considered to be directly proportional to the rate at which the fluid velocity is changing in the space. It is defined as the measure of the fluid’s resistance to flow. Based on this concept we have to solve this concept.
Complete step by step answer
A small sphere of radius $ r $ falls from rest in a viscous liquid. As a result, heat is produced due to viscous force. The rate of production of heat when the sphere attains its terminal velocity is proportional to
Let $ r $ is the radius of the sphere and $ {v_t} $ is its terminal speed. Then the weight of sphere is balanced by the buoyant force and viscous force such that:
Weight,
$ w = mg $
$ \because p = \dfrac{m}{V} $
$ m = \dfrac{4}{3}\pi {r^3}\;pg.....(1) $
So,
$ w = \dfrac{4}{3}\pi {r^3}p $
Buoyant force,
$ {F_B} = \dfrac{4}{3}\pi {r^3}\;\sigma g.....(2) $
Where $ \sigma $ is density of water.
Viscous force, F = $ 6\pi \eta rvt......(3) $
Where, $ \eta \;is $ viscosity.
From equation (1) (2) and (3)
$ w = {F_B} + {F_V} $
$ \dfrac{4}{3}\pi {r^3}pg = \dfrac{4}{3}\pi {r^3}\sigma g + 6\pi \eta rvt $
$ {V_t} = \dfrac{2}{9}\dfrac{{{r^2}(p - \sigma )g}}{\eta }........(4) $
The rate of production of heat when the sphere attains its terminal velocity is equal to work done by the viscous forces.
$ W = \dfrac{{dQ}}{{dt}} = {F_V} \times {V_t} $
$ W = 6\pi \eta r{v_t}^2 $
$ W = 6\pi \eta r{\left( {\dfrac{2}{9}\dfrac{{\left( {p - \sigma } \right)g}}{\eta }} \right)^2} $
$ \dfrac{{dQ}}{{dt}} \propto {r^5} $
Hence, the correct answer is Option (A).
Note
We should know when an object will float if the buoyancy force exerted on it by the fluid balances its weight. But from the Archimedes principle we get an idea that the buoyant force is the weight of the fluid displaced. So, in this case for a floating object on a liquid, the weight of the displaced liquid is the weight of the object.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What is the modal class for the following table given class 11 maths CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE
