Answer
Verified
469.8k+ views
Hint: According to Mohr’s Law,
$Y = \dfrac{{Stress}}{{Strain}}$
Elastic Potential Energy is given by the formula,
$U = \int {dW} $
Complete step by step solution:
It is given in the question that,
Natural length of the string is l
Cross – sectional area of the string is A
Young’s Modulus of the string is Y
Force acting on the string is F
According to Mohr’s Law,
$Y = \dfrac{{Stress}}{{Strain}}$ ……….(1)
Where,
Y is the Young’s Modulus
Also,
$Stress = \dfrac{F}{A}$
Where,
F is the Tension in the String
And,
\[Strain = \dfrac{{\Delta l}}{l}\]
Inserting the values of stress and strain in equation 1,
We get,
$ = > Y = \dfrac{{\dfrac{F}{A}}}{{\dfrac{{\Delta l}}{l}}}$
$ = > Y = \dfrac{{Fl}}{{A\Delta l}}$
$ = > F = \dfrac{{YA\Delta l}}{l}$ ……..(2)
Elastic Potential Energy is given by the formula,
$U = \int {dW} $
Where dW is the work done
In the above formula,
$dW = F.dx$
Where,
dx is the change in length of the string due to the applied tension
Inserting the value of dW in above equation,
We get,
$ = > U = \int {F.dx} $
Inserting the value of F in the above equation and the limits would be from 0 to $\Delta l$ (Since, initially the string was unstretched so initial limit is 0 and finally the string is stretch by $\Delta l$ so the final limit is $\Delta l$)
We get,
$ = > U = \int\limits_0^{\Delta l} {\dfrac{{YAx}}{l}.dx} $
$ = > U = \dfrac{{YA}}{l}\int\limits_0^{\Delta l} {x.dx} $
$ = > U = \dfrac{{YA}}{l}[\dfrac{{{x^2}}}{2}]_0^{\Delta l}$
$ = > U = \dfrac{{YA}}{l}\dfrac{{{{(\Delta l)}^2}}}{2}$ …………(3)
From Equation 2,
$ = > F = \dfrac{{YA\Delta l}}{l}$
$ = > \Delta l = \dfrac{{Fl}}{{AY}}$
Inserting the value of $\Delta l$ in Equation 3,
We get,
$ = > U = \dfrac{{YA}}{l}\dfrac{{{{(\dfrac{{Fl}}{{AY}})}^2}}}{2}$
$ = > U = \dfrac{{{F^2}l}}{{2AY}}$
Comparing the above equation with the one given in the question,
$ = > U = \dfrac{{{F^2}l}}{{2AY}} = \dfrac{{{F^2}l}}{{xAY}}$
Clearly, we can see from the above expression that,
$x = 2$
Note: Such types of questions are categorized into tricky sections. One requires in-depth knowledge of mechanics and calculus in order to solve such Calculation Intensive Problems.
$Y = \dfrac{{Stress}}{{Strain}}$
Elastic Potential Energy is given by the formula,
$U = \int {dW} $
Complete step by step solution:
It is given in the question that,
Natural length of the string is l
Cross – sectional area of the string is A
Young’s Modulus of the string is Y
Force acting on the string is F
According to Mohr’s Law,
$Y = \dfrac{{Stress}}{{Strain}}$ ……….(1)
Where,
Y is the Young’s Modulus
Also,
$Stress = \dfrac{F}{A}$
Where,
F is the Tension in the String
And,
\[Strain = \dfrac{{\Delta l}}{l}\]
Inserting the values of stress and strain in equation 1,
We get,
$ = > Y = \dfrac{{\dfrac{F}{A}}}{{\dfrac{{\Delta l}}{l}}}$
$ = > Y = \dfrac{{Fl}}{{A\Delta l}}$
$ = > F = \dfrac{{YA\Delta l}}{l}$ ……..(2)
Elastic Potential Energy is given by the formula,
$U = \int {dW} $
Where dW is the work done
In the above formula,
$dW = F.dx$
Where,
dx is the change in length of the string due to the applied tension
Inserting the value of dW in above equation,
We get,
$ = > U = \int {F.dx} $
Inserting the value of F in the above equation and the limits would be from 0 to $\Delta l$ (Since, initially the string was unstretched so initial limit is 0 and finally the string is stretch by $\Delta l$ so the final limit is $\Delta l$)
We get,
$ = > U = \int\limits_0^{\Delta l} {\dfrac{{YAx}}{l}.dx} $
$ = > U = \dfrac{{YA}}{l}\int\limits_0^{\Delta l} {x.dx} $
$ = > U = \dfrac{{YA}}{l}[\dfrac{{{x^2}}}{2}]_0^{\Delta l}$
$ = > U = \dfrac{{YA}}{l}\dfrac{{{{(\Delta l)}^2}}}{2}$ …………(3)
From Equation 2,
$ = > F = \dfrac{{YA\Delta l}}{l}$
$ = > \Delta l = \dfrac{{Fl}}{{AY}}$
Inserting the value of $\Delta l$ in Equation 3,
We get,
$ = > U = \dfrac{{YA}}{l}\dfrac{{{{(\dfrac{{Fl}}{{AY}})}^2}}}{2}$
$ = > U = \dfrac{{{F^2}l}}{{2AY}}$
Comparing the above equation with the one given in the question,
$ = > U = \dfrac{{{F^2}l}}{{2AY}} = \dfrac{{{F^2}l}}{{xAY}}$
Clearly, we can see from the above expression that,
$x = 2$
Note: Such types of questions are categorized into tricky sections. One requires in-depth knowledge of mechanics and calculus in order to solve such Calculation Intensive Problems.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers