Answer
Verified
496.8k+ views
Hint: Calculate the volume of the bigger cube and divide it by 8 to get the volume of the smaller cube. Then, use the volume of the cube formula to determine the side. Then, use the formula for surface area to find the ratio.
Complete step-by-step answer:
The solid cube of side 12 cm is cut into eight cubes of equal volumes.
We know the formula for the volume of a cube of side a is \[{a^3}\].
\[V = {a^3}...........(1)\]
The volume of the bigger cube of side 12 cm is given as follows:
\[{V_B} = {(12)^3}\]
We know that the value of the cube of 12 is 1728.
\[{V_B} = 1728c{m^3}\]
The volume of each smaller cube is the volume of the bigger cube divided by 8.
\[{V_S} = \dfrac{{{V_B}}}{8}\]
\[{V_S} = \dfrac{{1728}}{8}\]
\[{V_S} = 216c{m^3}\]
Using equation (1), we get the side of the smaller cube to be as follows:
\[{a_S}^3 = 216\]
The cube root of 216 is 6.
\[{a_S} = 6cm\]
Hence, the side of the smaller cube is 6 cm.
The formula for surface area of the cube is given as follows:
\[S = 6{a^2}...........(2)\]
Using equation (2) to find the ratio of the surface areas of the cubes, we have:
\[\dfrac{{{S_B}}}{{{S_S}}} = \dfrac{{6{a_B}^2}}{{6{a_S}^2}}\]
Substituting the value of sides of the bigger and smaller cube, we have:
\[\dfrac{{{S_B}}}{{{S_S}}} = \dfrac{{{{(12)}^2}}}{{{{(6)}^2}}}\]
\[\dfrac{{{S_B}}}{{{S_S}}} = {2^2}\]
\[\dfrac{{{S_B}}}{{{S_S}}} = 4\]
Hence, the ratio of surface area of the bigger cube to the smaller cube is 4.
Note: When one cube is divided into eight small cubes of equal volume. Then the volume of the smaller cube is \[\dfrac{1}{8}\] times the volume of the bigger cube.
Complete step-by-step answer:
The solid cube of side 12 cm is cut into eight cubes of equal volumes.
We know the formula for the volume of a cube of side a is \[{a^3}\].
\[V = {a^3}...........(1)\]
The volume of the bigger cube of side 12 cm is given as follows:
\[{V_B} = {(12)^3}\]
We know that the value of the cube of 12 is 1728.
\[{V_B} = 1728c{m^3}\]
The volume of each smaller cube is the volume of the bigger cube divided by 8.
\[{V_S} = \dfrac{{{V_B}}}{8}\]
\[{V_S} = \dfrac{{1728}}{8}\]
\[{V_S} = 216c{m^3}\]
Using equation (1), we get the side of the smaller cube to be as follows:
\[{a_S}^3 = 216\]
The cube root of 216 is 6.
\[{a_S} = 6cm\]
Hence, the side of the smaller cube is 6 cm.
The formula for surface area of the cube is given as follows:
\[S = 6{a^2}...........(2)\]
Using equation (2) to find the ratio of the surface areas of the cubes, we have:
\[\dfrac{{{S_B}}}{{{S_S}}} = \dfrac{{6{a_B}^2}}{{6{a_S}^2}}\]
Substituting the value of sides of the bigger and smaller cube, we have:
\[\dfrac{{{S_B}}}{{{S_S}}} = \dfrac{{{{(12)}^2}}}{{{{(6)}^2}}}\]
\[\dfrac{{{S_B}}}{{{S_S}}} = {2^2}\]
\[\dfrac{{{S_B}}}{{{S_S}}} = 4\]
Hence, the ratio of surface area of the bigger cube to the smaller cube is 4.
Note: When one cube is divided into eight small cubes of equal volume. Then the volume of the smaller cube is \[\dfrac{1}{8}\] times the volume of the bigger cube.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE