Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

A solid hemisphere (m, R) has the moment of inertia about axis 1 (Diameter of hemisphere)
seo images


A. mR25
B. 25mR2
C. 23mR2
D. 173320mR2

Answer
VerifiedVerified
510.9k+ views
like imagedislike image
Hint: First step will be considering a disc shaped component parallel to the base of the solid hemisphere. Then we will find the moment of inertia of that disc about its center of mass. Then by using parallel axis theorem, we will find the moment of inertia about the axis 1. Then upon integrating the equations we got over the range 0 to R, we will get the required result.

Complete step by step solution:
seo images

Let us consider a circular disc-shaped component of the solid hemisphere at a distance x from the axis 1 with radius y and width dx.
As the mass and radius of this hemispherical solid is m and R.
So, mass of the disc, dm=mass of hemispherevolume of hemisphere×volume of the disc
dm=(m23πR3)(πy2dx)
Let us take ρ=m23πR3.
Therefore, dm=ρ(πy2d) ………. (i)
Now, moment of inertia of the solid hemisphere about the axis 1 can be given by the parallel axis theorem as,
I1=Icm+mx2, where Icm is the moment of inertia of the disk about its centre of mass.
Therefore, dI1=(dm)y24+(dm)x2
Now we will integrate both sides of the equation for the range 0 to R.
I1=0R(dm)y24+0Rdmx2
Putting the value of dm from equation (i)
I1=0R(ρπy2dx)y24+0R(ρπy2dx)x2
=ρπ40R(R2x2)dx+ρy0R(R2X2x4)dx
=ρπ4[R5+R552R2R33]+[ρπR2(R33)ρπ(R55)]
=ρπR54[1+1523]+ρπR5[1315]
=ρπR5(415)
Since, ρ=m23πR3.
I1=3m2πR3.πR5415=25mR2.
Hence, option b is the correct answer.

Note: Moment of inertia of a disc is a basic thing applied here and should be remembered. One may forget to use the parallel axis theorem while solving such types of questions. The axis of solid hemisphere about which the moment of inertia has been asked should be parallel to the axis of the disc.