Answer
Verified
454.8k+ views
Hint: when the body is in rolling motion on an uneven surface, it has both rotation and translation, there are some cases when body rolls without slipping. The role played by mass in translation is played by moment of inertia in rotation.
Complete step by step answer:Linear kinetic energy of a body of mass, m and moving with linear velocity v, is given by \[{{K}_{t}}=\dfrac{m{{v}^{2}}}{2}\]
Rotational kinetic energy of a body having moment of inertia I, and angular velocity \[\omega \]is given by \[{{K}_{r}}=\dfrac{I{{\omega }^{2}}}{2}\]
Now a body possessing both translational kinetic energy and rotational kinetic energy is given by, \[{{K}_{t}}+{{K}_{r}}=\dfrac{m{{v}^{2}}}{2}+\dfrac{I{{\omega }^{2}}}{2}\]
Now to find the desired ratio,
\[{{K}_{t}}\] :( \[{{K}_{t}}+{{K}_{r}}\])= \[\dfrac{{{K}_{t}}}{{{K}_{t}}+{{K}_{r}}}=\dfrac{\dfrac{m{{v}^{2}}}{2}}{\dfrac{m{{v}^{2}}}{2}+\dfrac{I{{\omega }^{2}}}{2}}\]--(1)
Moment of inertia of solid sphere is \[\dfrac{2m{{r}^{2}}}{5}\] and angular velocity can be written as \[v=r\omega \], putting the value in eq (1) we get,
\[\dfrac{{{K}_{t}}}{{{K}_{t}}+{{K}_{r}}}=\dfrac{\dfrac{m{{v}^{2}}}{2}}{\dfrac{m{{v}^{2}}}{2}+\dfrac{m{{v}^{2}}}{5}}=\dfrac{\dfrac{1}{2}}{\dfrac{7}{10}}=\dfrac{5}{7}\]
So, the correct option is (D)
Additional information- The moment of inertia of a uniform square plate of mass m and edge an about one of its diagonals comes out to be \[\dfrac{m{{a}^{2}}}{12}\]
Note:Rotational energy is on account of the motion of the body. Always while finding rotational kinetic energy we use moment of inertia, instead of mass. The moment of inertia plays the same role in rotation as it is played by mass in translation. Also, since we have taken the ratio, the result is dimensionless.
Complete step by step answer:Linear kinetic energy of a body of mass, m and moving with linear velocity v, is given by \[{{K}_{t}}=\dfrac{m{{v}^{2}}}{2}\]
Rotational kinetic energy of a body having moment of inertia I, and angular velocity \[\omega \]is given by \[{{K}_{r}}=\dfrac{I{{\omega }^{2}}}{2}\]
Now a body possessing both translational kinetic energy and rotational kinetic energy is given by, \[{{K}_{t}}+{{K}_{r}}=\dfrac{m{{v}^{2}}}{2}+\dfrac{I{{\omega }^{2}}}{2}\]
Now to find the desired ratio,
\[{{K}_{t}}\] :( \[{{K}_{t}}+{{K}_{r}}\])= \[\dfrac{{{K}_{t}}}{{{K}_{t}}+{{K}_{r}}}=\dfrac{\dfrac{m{{v}^{2}}}{2}}{\dfrac{m{{v}^{2}}}{2}+\dfrac{I{{\omega }^{2}}}{2}}\]--(1)
Moment of inertia of solid sphere is \[\dfrac{2m{{r}^{2}}}{5}\] and angular velocity can be written as \[v=r\omega \], putting the value in eq (1) we get,
\[\dfrac{{{K}_{t}}}{{{K}_{t}}+{{K}_{r}}}=\dfrac{\dfrac{m{{v}^{2}}}{2}}{\dfrac{m{{v}^{2}}}{2}+\dfrac{m{{v}^{2}}}{5}}=\dfrac{\dfrac{1}{2}}{\dfrac{7}{10}}=\dfrac{5}{7}\]
So, the correct option is (D)
Additional information- The moment of inertia of a uniform square plate of mass m and edge an about one of its diagonals comes out to be \[\dfrac{m{{a}^{2}}}{12}\]
Note:Rotational energy is on account of the motion of the body. Always while finding rotational kinetic energy we use moment of inertia, instead of mass. The moment of inertia plays the same role in rotation as it is played by mass in translation. Also, since we have taken the ratio, the result is dimensionless.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers