Answer
Verified
429k+ views
Hint: In order to find the solution of the given question, first of all we need to find the component of the velocity in which it is acting. After that we need to apply the formula for the frequency according to the Doppler’s effect. Then we need to solve the equation obtained and finally we can conclude with the correct solution for the given question.
Complete step by step answer:
Step 1:
First of all let us draw a figure according to the given conditions.
As we can see from the figure that the situation is of a right angle triangle, so we can find the hypotenuse which will be, $h = \sqrt {{3^2} + {4^2}} = \sqrt {25} = 5m$
Now, in the triangle, $\cos \theta = \dfrac{b}{h} = \dfrac{3}{5}$
Step 2:
Now, we need to find the horizontal component of the source of the sound as the sound is travelling along a road. So, we can write, ${v_s} = v\cos \theta = \dfrac{{100}}{3} \times \dfrac{3}{5} = 20m{s^{ - 1}}$
Step 3:
We know the formula for frequency in case of Doppler’s effect is given by,
$f' = f\left( {\dfrac{{v \pm {v_o}}}{{v \pm {v_s}}}} \right)$ -----(i)
Here, since the observer is not moving so the velocity of the observer is zero.
Now, putting the values in equation (i), we get,
$f' = 640\left( {\dfrac{{340 - 0}}{{340 - 20}}} \right)$
$ \Rightarrow f' = 640 \times \dfrac{{340}}{{320}} = 680Hz$
Therefore, the required value of the frequency is $680Hz$.
Hence, the correct answer is option (B).
Note: We define Doppler’s effect as the effect observed when either the source of a wave moves or the observer moves relative to each other. In other words we can say that the increase or decrease in the frequency of a wave when the source of the wave and the observer move towards or away from each other.
Complete step by step answer:
Step 1:
First of all let us draw a figure according to the given conditions.
As we can see from the figure that the situation is of a right angle triangle, so we can find the hypotenuse which will be, $h = \sqrt {{3^2} + {4^2}} = \sqrt {25} = 5m$
Now, in the triangle, $\cos \theta = \dfrac{b}{h} = \dfrac{3}{5}$
Step 2:
Now, we need to find the horizontal component of the source of the sound as the sound is travelling along a road. So, we can write, ${v_s} = v\cos \theta = \dfrac{{100}}{3} \times \dfrac{3}{5} = 20m{s^{ - 1}}$
Step 3:
We know the formula for frequency in case of Doppler’s effect is given by,
$f' = f\left( {\dfrac{{v \pm {v_o}}}{{v \pm {v_s}}}} \right)$ -----(i)
Here, since the observer is not moving so the velocity of the observer is zero.
Now, putting the values in equation (i), we get,
$f' = 640\left( {\dfrac{{340 - 0}}{{340 - 20}}} \right)$
$ \Rightarrow f' = 640 \times \dfrac{{340}}{{320}} = 680Hz$
Therefore, the required value of the frequency is $680Hz$.
Hence, the correct answer is option (B).
Note: We define Doppler’s effect as the effect observed when either the source of a wave moves or the observer moves relative to each other. In other words we can say that the increase or decrease in the frequency of a wave when the source of the wave and the observer move towards or away from each other.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE