
A spherically symmetric charge distribution is characterized by a charge density having the following variation:
\[p\left( r \right) = {p_0}\left( {1 - \dfrac{r}{R}} \right)\] for \[r < R\]
\[p\left( r \right) = 0\] for \[r \geqslant R\]
Where r is the distance from the centre of the charge distribution and \[{p_0}\] is the constant. The electric field at an internal point r:
A. \[\dfrac{{{p_0}}}{{4{\varepsilon _0}}}\left( {\dfrac{r}{3} - \dfrac{{{r^2}}}{{4R}}} \right)\]
B. \[\dfrac{{{p_0}}}{{{\varepsilon _0}}}\left( {\dfrac{r}{3} - \dfrac{{{r^2}}}{{4R}}} \right)\]
C. \[\dfrac{{{p_0}}}{{3{\varepsilon _0}}}\left( {\dfrac{r}{3} - \dfrac{{{r^2}}}{{4R}}} \right)\]
D. \[\dfrac{{{p_0}}}{{12{\varepsilon _0}}}\left( {\dfrac{r}{3} - \dfrac{{{r^2}}}{{4R}}} \right)\]
Answer
463.8k+ views
Hint: Consider the spherical shell of certain thickness at a distance r from the centre of the sphere and calculate the charge on this shell. Integrating the charge on this shell from 0 to r, you will get the charge enclosed by this region. Recall the expression for the electric field and substitute the expression for the charge.
Formula used:
\[E = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{q}{{{r^2}}}\]
Here, \[{\varepsilon _0}\] is the permittivity of the medium, q is the charge and r is the distance of the point from the charge.
Complete step by step answer:
We have given that the charge density outside the sphere is zero. That means the electric field outside the sphere is zero. We consider the spherical shell of radius r and thickness dr inside the sphere at a distance r from the origin of the sphere. We can express the charge on this shell as,
\[dq = p\left( r \right)4\pi {r^2}dr\]
We can calculate the total charge in the region between the origin and distance r by integrating the above equation.
\[\int {dq = q} = \int\limits_0^r {p\left( r \right)4\pi {r^2}dr} \]
\[ \Rightarrow q = 4\pi {p_0}\int\limits_0^r {\left( {1 - \dfrac{r}{R}} \right){r^2}dr} \]
\[ \Rightarrow q = 4\pi {p_0}\int\limits_0^r {\left( {{r^2} - \dfrac{{{r^3}}}{R}} \right)dr} \]
\[ \Rightarrow q = 4\pi {p_0}\left( {\dfrac{{{r^3}}}{3} + \dfrac{{{r^4}}}{{4R}}} \right)\] …… (1)
The electric field at a distance r from the centre of the sphere is,
\[E = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{q}{{{r^2}}}\]
Here, \[{\varepsilon _0}\] is the permittivity of the medium.
Substituting equation (1) in the above equation, we get,
\[E = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{1}{{{r^2}}}\left( {4\pi {p_0}\left( {\dfrac{{{r^3}}}{3} + \dfrac{{{r^4}}}{{4R}}} \right)} \right)\]
\[ \Rightarrow E = \dfrac{{{p_0}}}{{{\varepsilon _0}}}\left( {\dfrac{r}{3} + \dfrac{{{r^2}}}{{4R}}} \right)\]
So, the correct answer is option B.
Note: Another way to express the electric field in the region is by using Gauss’s law. According to Gauss’s law,
\[Eds = \dfrac{{{q_{enc}}}}{{{\varepsilon _0}}}\]
\[ \Rightarrow E\left( {4\pi {r^2}} \right) = \dfrac{{{q_{enc}}}}{{{\varepsilon _0}}}\],
where, \[{q_{enc}}\] is the charge enclosed in region between 0 to r. By substituting the expression for the charge enclosed, we can get the value of the electric field at distance r from the centre.
Formula used:
\[E = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{q}{{{r^2}}}\]
Here, \[{\varepsilon _0}\] is the permittivity of the medium, q is the charge and r is the distance of the point from the charge.
Complete step by step answer:
We have given that the charge density outside the sphere is zero. That means the electric field outside the sphere is zero. We consider the spherical shell of radius r and thickness dr inside the sphere at a distance r from the origin of the sphere. We can express the charge on this shell as,
\[dq = p\left( r \right)4\pi {r^2}dr\]
We can calculate the total charge in the region between the origin and distance r by integrating the above equation.
\[\int {dq = q} = \int\limits_0^r {p\left( r \right)4\pi {r^2}dr} \]
\[ \Rightarrow q = 4\pi {p_0}\int\limits_0^r {\left( {1 - \dfrac{r}{R}} \right){r^2}dr} \]
\[ \Rightarrow q = 4\pi {p_0}\int\limits_0^r {\left( {{r^2} - \dfrac{{{r^3}}}{R}} \right)dr} \]
\[ \Rightarrow q = 4\pi {p_0}\left( {\dfrac{{{r^3}}}{3} + \dfrac{{{r^4}}}{{4R}}} \right)\] …… (1)
The electric field at a distance r from the centre of the sphere is,
\[E = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{q}{{{r^2}}}\]
Here, \[{\varepsilon _0}\] is the permittivity of the medium.
Substituting equation (1) in the above equation, we get,
\[E = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{1}{{{r^2}}}\left( {4\pi {p_0}\left( {\dfrac{{{r^3}}}{3} + \dfrac{{{r^4}}}{{4R}}} \right)} \right)\]
\[ \Rightarrow E = \dfrac{{{p_0}}}{{{\varepsilon _0}}}\left( {\dfrac{r}{3} + \dfrac{{{r^2}}}{{4R}}} \right)\]
So, the correct answer is option B.
Note: Another way to express the electric field in the region is by using Gauss’s law. According to Gauss’s law,
\[Eds = \dfrac{{{q_{enc}}}}{{{\varepsilon _0}}}\]
\[ \Rightarrow E\left( {4\pi {r^2}} \right) = \dfrac{{{q_{enc}}}}{{{\varepsilon _0}}}\],
where, \[{q_{enc}}\] is the charge enclosed in region between 0 to r. By substituting the expression for the charge enclosed, we can get the value of the electric field at distance r from the centre.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
