A square ABCD and a circle are drawn on a graph sheet such that the vertices of the square ABCD are A (-2, 2), B (2, 2), C (2, -2), D (-2, -2) and the circle with center (0, 0) and radius 2 cm is cut off from the above square ABCD. Find the area of the remaining region in the square ABCD.
Answer
Verified
510k+ views
Hint: This is an area question so proper pictorial representation based upon the data provided in the question will surely help in understanding about the region which we are concerned with. The difference between the area of the square and the area of the circle will take us to the right answer, so use the respective formula for the area to reach the solution.
ABCD is a square whose vertices are given as A (-2, 2), B (2, 2), C (2, -2), D (-2, -2).
In a square of the sides are equal thus AB=BC=CD=DA
Now using the distance formula $D = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $…………………… (1)
Using equation (1) we can find out the side AB, so it will be
$AB = \sqrt {{{\left( { - 2 - 2} \right)}^2} + {{\left( {2 - 2} \right)}^2}} $ As A is (-2, 2) and B is (2, 2)
$ \Rightarrow AB = \sqrt {16 + 0} = \sqrt {16} = 4$ Units
Now as AB=BC=CD=DA=4 units
Now the area of a square is given as, $A = {\left( {side} \right)^2}$…………….. (2)
So side=4 units
Hence putting values in equation (2) we get
$A = {\left( 4 \right)^2} = 16$Units………………. (3)
Now the circle is centered at origin and its radius is given as r=2cm.
Now the area of circle is given as $a = \pi {r^2}$……………………… (4)
Putting the value in equation (3) we get
$a = \pi {(2)^2} = 4\pi c{m^2}$…………………. (5)
Clearly,
Required highlighted area = Area of square – Area of circle………………… (5)
So substituting the values from equation (3) and (5) we get
Required highlighted area = $16 - 4\pi {\text{ c}}{{\text{m}}^2}$
Note: Whenever we face such types of problems the key behind the solution lies in the diagrammatic representation of the data provided, then awareness about the basic area formula can help in getting to the right track to reach the answer.
ABCD is a square whose vertices are given as A (-2, 2), B (2, 2), C (2, -2), D (-2, -2).
In a square of the sides are equal thus AB=BC=CD=DA
Now using the distance formula $D = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $…………………… (1)
Using equation (1) we can find out the side AB, so it will be
$AB = \sqrt {{{\left( { - 2 - 2} \right)}^2} + {{\left( {2 - 2} \right)}^2}} $ As A is (-2, 2) and B is (2, 2)
$ \Rightarrow AB = \sqrt {16 + 0} = \sqrt {16} = 4$ Units
Now as AB=BC=CD=DA=4 units
Now the area of a square is given as, $A = {\left( {side} \right)^2}$…………….. (2)
So side=4 units
Hence putting values in equation (2) we get
$A = {\left( 4 \right)^2} = 16$Units………………. (3)
Now the circle is centered at origin and its radius is given as r=2cm.
Now the area of circle is given as $a = \pi {r^2}$……………………… (4)
Putting the value in equation (3) we get
$a = \pi {(2)^2} = 4\pi c{m^2}$…………………. (5)
Clearly,
Required highlighted area = Area of square – Area of circle………………… (5)
So substituting the values from equation (3) and (5) we get
Required highlighted area = $16 - 4\pi {\text{ c}}{{\text{m}}^2}$
Note: Whenever we face such types of problems the key behind the solution lies in the diagrammatic representation of the data provided, then awareness about the basic area formula can help in getting to the right track to reach the answer.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE
Write an application to the principal requesting five class 10 english CBSE
What are the public facilities provided by the government? Also explain each facility
What is Commercial Farming ? What are its types ? Explain them with Examples
Complete the sentence with the most appropriate word class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE