A stone is projected horizontally with a speed v from a height h above the ground. A horizontal wind is blowing in direction opposite to velocity of projection and gives the stone a constant horizontal acceleration of (direction opposite to initial velocity). As a result, the stone falls on ground at point vertically below the point of projection. Then find the value of \[\dfrac{{{f}^{2}}h}{g{{v}^{2}}}\](g is the acceleration due to gravity).
Answer
Verified
468.6k+ views
Hint: We need to consider the equations of motion of an object in two-dimensions to solve this problem. We can find relations between the given parameters and relate them together to reach the desired solution for the given expression.
Complete step by step answer:
In a projectile motion, an object is fired with a velocity that has its components along both the vertical and horizontal directions. In the situation given to us, the stone is projected horizontal, i.e., there is no vertical force and therefore, a vertical velocity or acceleration during the time of flight.
In a 2-D motion, the equation of motion can be given as –
\[S=ut+\dfrac{1}{2}g{{t}^{2}}\]
Where, S is the displacement along an axis,
u is the initial velocity,
g is the acceleration due to gravity,
t is the time of flight.
Let us consider our situation now. It is given that the stone has a horizontal velocity v at \[t=0\], at a height h.
Due to the opposite horizontal force (acceleration f) the stone reaches an abrupt stop and falls vertically downwards under the force of gravity at an acceleration of g.
Applying the equation of motion, we get,
\[t=\sqrt{\dfrac{2h}{g}}\text{ --(1)}\]
Where h is the vertical height. The initial velocity is 0 at the start of vertical motion.
Also, at this point there is no more horizontal displacement.
The equation of motion for the horizontal motion becomes,
\[\begin{align}
& 0=vt-\dfrac{1}{2}f{{t}^{2}} \\
& \Rightarrow \text{ }vt=\dfrac{1}{2}f{{t}^{2}}\text{ } \\
& \Rightarrow \text{ }t=\dfrac{2v}{f}\text{ --(2)} \\
\end{align}\]
Also, we have another equation for time of flight as in (1), So equating (1) and (2),
\[\begin{align}
& \Rightarrow \text{ }\sqrt{\dfrac{2h}{g}}=\dfrac{2v}{f} \\
& \Rightarrow \text{ }\dfrac{2h}{g}=\dfrac{4{{v}^{2}}}{{{f}^{2}}} \\
& \Rightarrow \text{ }\dfrac{{{f}^{2}}h}{g{{v}^{2}}}=2 \\
\end{align}\]
So, the required answer is 2.
Note:
We can easily use this time of flight equation in 1-D for this question because here involves no parabolic motion after the horizontal flight. The stone tends to move down vertically at the instant when its initial velocity matches with the opposing velocity due to wind force.
The vertical motion is due to the cancelling of horizontal velocities.
Complete step by step answer:
In a projectile motion, an object is fired with a velocity that has its components along both the vertical and horizontal directions. In the situation given to us, the stone is projected horizontal, i.e., there is no vertical force and therefore, a vertical velocity or acceleration during the time of flight.
In a 2-D motion, the equation of motion can be given as –
\[S=ut+\dfrac{1}{2}g{{t}^{2}}\]
Where, S is the displacement along an axis,
u is the initial velocity,
g is the acceleration due to gravity,
t is the time of flight.
Let us consider our situation now. It is given that the stone has a horizontal velocity v at \[t=0\], at a height h.
Due to the opposite horizontal force (acceleration f) the stone reaches an abrupt stop and falls vertically downwards under the force of gravity at an acceleration of g.
Applying the equation of motion, we get,
\[t=\sqrt{\dfrac{2h}{g}}\text{ --(1)}\]
Where h is the vertical height. The initial velocity is 0 at the start of vertical motion.
Also, at this point there is no more horizontal displacement.
The equation of motion for the horizontal motion becomes,
\[\begin{align}
& 0=vt-\dfrac{1}{2}f{{t}^{2}} \\
& \Rightarrow \text{ }vt=\dfrac{1}{2}f{{t}^{2}}\text{ } \\
& \Rightarrow \text{ }t=\dfrac{2v}{f}\text{ --(2)} \\
\end{align}\]
Also, we have another equation for time of flight as in (1), So equating (1) and (2),
\[\begin{align}
& \Rightarrow \text{ }\sqrt{\dfrac{2h}{g}}=\dfrac{2v}{f} \\
& \Rightarrow \text{ }\dfrac{2h}{g}=\dfrac{4{{v}^{2}}}{{{f}^{2}}} \\
& \Rightarrow \text{ }\dfrac{{{f}^{2}}h}{g{{v}^{2}}}=2 \\
\end{align}\]
So, the required answer is 2.
Note:
We can easily use this time of flight equation in 1-D for this question because here involves no parabolic motion after the horizontal flight. The stone tends to move down vertically at the instant when its initial velocity matches with the opposing velocity due to wind force.
The vertical motion is due to the cancelling of horizontal velocities.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE