Answer
Verified
447.6k+ views
Hint: We need to consider the equations of motion of an object in two-dimensions to solve this problem. We can find relations between the given parameters and relate them together to reach the desired solution for the given expression.
Complete step by step answer:
In a projectile motion, an object is fired with a velocity that has its components along both the vertical and horizontal directions. In the situation given to us, the stone is projected horizontal, i.e., there is no vertical force and therefore, a vertical velocity or acceleration during the time of flight.
In a 2-D motion, the equation of motion can be given as –
\[S=ut+\dfrac{1}{2}g{{t}^{2}}\]
Where, S is the displacement along an axis,
u is the initial velocity,
g is the acceleration due to gravity,
t is the time of flight.
Let us consider our situation now. It is given that the stone has a horizontal velocity v at \[t=0\], at a height h.
Due to the opposite horizontal force (acceleration f) the stone reaches an abrupt stop and falls vertically downwards under the force of gravity at an acceleration of g.
Applying the equation of motion, we get,
\[t=\sqrt{\dfrac{2h}{g}}\text{ --(1)}\]
Where h is the vertical height. The initial velocity is 0 at the start of vertical motion.
Also, at this point there is no more horizontal displacement.
The equation of motion for the horizontal motion becomes,
\[\begin{align}
& 0=vt-\dfrac{1}{2}f{{t}^{2}} \\
& \Rightarrow \text{ }vt=\dfrac{1}{2}f{{t}^{2}}\text{ } \\
& \Rightarrow \text{ }t=\dfrac{2v}{f}\text{ --(2)} \\
\end{align}\]
Also, we have another equation for time of flight as in (1), So equating (1) and (2),
\[\begin{align}
& \Rightarrow \text{ }\sqrt{\dfrac{2h}{g}}=\dfrac{2v}{f} \\
& \Rightarrow \text{ }\dfrac{2h}{g}=\dfrac{4{{v}^{2}}}{{{f}^{2}}} \\
& \Rightarrow \text{ }\dfrac{{{f}^{2}}h}{g{{v}^{2}}}=2 \\
\end{align}\]
So, the required answer is 2.
Note:
We can easily use this time of flight equation in 1-D for this question because here involves no parabolic motion after the horizontal flight. The stone tends to move down vertically at the instant when its initial velocity matches with the opposing velocity due to wind force.
The vertical motion is due to the cancelling of horizontal velocities.
Complete step by step answer:
In a projectile motion, an object is fired with a velocity that has its components along both the vertical and horizontal directions. In the situation given to us, the stone is projected horizontal, i.e., there is no vertical force and therefore, a vertical velocity or acceleration during the time of flight.
In a 2-D motion, the equation of motion can be given as –
\[S=ut+\dfrac{1}{2}g{{t}^{2}}\]
Where, S is the displacement along an axis,
u is the initial velocity,
g is the acceleration due to gravity,
t is the time of flight.
Let us consider our situation now. It is given that the stone has a horizontal velocity v at \[t=0\], at a height h.
Due to the opposite horizontal force (acceleration f) the stone reaches an abrupt stop and falls vertically downwards under the force of gravity at an acceleration of g.
Applying the equation of motion, we get,
\[t=\sqrt{\dfrac{2h}{g}}\text{ --(1)}\]
Where h is the vertical height. The initial velocity is 0 at the start of vertical motion.
Also, at this point there is no more horizontal displacement.
The equation of motion for the horizontal motion becomes,
\[\begin{align}
& 0=vt-\dfrac{1}{2}f{{t}^{2}} \\
& \Rightarrow \text{ }vt=\dfrac{1}{2}f{{t}^{2}}\text{ } \\
& \Rightarrow \text{ }t=\dfrac{2v}{f}\text{ --(2)} \\
\end{align}\]
Also, we have another equation for time of flight as in (1), So equating (1) and (2),
\[\begin{align}
& \Rightarrow \text{ }\sqrt{\dfrac{2h}{g}}=\dfrac{2v}{f} \\
& \Rightarrow \text{ }\dfrac{2h}{g}=\dfrac{4{{v}^{2}}}{{{f}^{2}}} \\
& \Rightarrow \text{ }\dfrac{{{f}^{2}}h}{g{{v}^{2}}}=2 \\
\end{align}\]
So, the required answer is 2.
Note:
We can easily use this time of flight equation in 1-D for this question because here involves no parabolic motion after the horizontal flight. The stone tends to move down vertically at the instant when its initial velocity matches with the opposing velocity due to wind force.
The vertical motion is due to the cancelling of horizontal velocities.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Derive an expression for drift velocity of free electrons class 12 physics CBSE
Which are the Top 10 Largest Countries of the World?
Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
The energy of a charged conductor is given by the expression class 12 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Derive an expression for electric field intensity due class 12 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Derive an expression for electric potential at point class 12 physics CBSE