Answer
Verified
398k+ views
Hint: Solve by representing the text with a diagram, then use trigonometric formulas to find the relation between the given variables. Use formula for speed in terms of distance and time to get the time taken by the car to reach the foot of the tower from the given point.
Let us represent the scenario with a diagram.
Let AB be the tower with the man standing on the top of the tower at A. Let D be the point when the angle of depression is \[30^\circ \] and E be the point where the angle of depression is \[60^\circ \].
Let line segment DE be equal to X and line segment EB be equal to Y.
Let the speed of the car be \[v\], which is a constant since the car travels with a uniform speed.
We know that distance covered is speed times time, that is:
\[d = v \times t{\text{ }}............{\text{(1)}}\]
where \[d\] is the distance covered, \[v\] is the speed and \[t\] is the time taken.
The car takes 6 seconds to go from D to E.
Hence, using equation (1), we obtain the value of X as follows:
\[X = v \times 6\]
\[X = 6v{\text{ }}...........{\text{(2)}}\]
Consider \[\Delta ADB\], we know that tangent of an angle is the ratio of opposite side by adjacent side, therefore we have:
\[\tan \angle ADB = \dfrac{{AB}}{{DB}}\]
\[\tan 30^\circ = \dfrac{h}{{X + Y}}\]
Using \[\tan 30^\circ = \dfrac{1}{{\sqrt 3 }}\], we get:
\[\dfrac{1}{{\sqrt 3 }} = \dfrac{h}{{X + Y}}\]
Cross multiplying, we have:
\[X + Y = \sqrt 3 {\text{ }}h{\text{ }}............{\text{(3)}}\]
Similarly, consider \[\Delta AEB\] and applying tangent formula to \[\angle AEB\] , we have:
\[\tan \angle AEB = \dfrac{{AB}}{{EB}}\]
\[\tan 60^\circ = \dfrac{h}{Y}\]
Using \[\tan 60^\circ = \sqrt 3 \] , we get:
\[\sqrt 3 = \dfrac{h}{Y}\]
\[h = \sqrt 3 {\text{Y }}..........{\text{(4)}}\]
Now, substituting equation (4) in equation (3), we get:
\[X + Y = \sqrt 3 \left( {\sqrt 3 Y} \right)\]
\[X + Y = 3Y\]
Solving for \[Y\] in terms of \[X\] , we get:
\[X = 3Y - Y\]
\[X = 2Y\]
\[Y = \dfrac{X}{2}\]
Using equation (2), we get \[Y\] in terms of \[v\] .
\[Y = \dfrac{{6v}}{2}\]
\[Y = 3v{\text{ }}..........{\text{(5)}}\]
Now, let us use equation (1) to find the time calculated to reach the foot of the tower from point E.
\[t = \dfrac{d}{v}\]
Here, the distance \[d\] is \[Y\] .
\[t = \dfrac{Y}{v}\]
Using equation (5), we get the time taken as follows:
\[t = \dfrac{{3v}}{v}\]
\[t = 3{\text{ sec}}\]
Therefore, it takes 3 seconds to reach the foot of the tower from the given point.
Hence, the correct answer is 3 seconds.
Note: You might get confused with the term angle of depression. It is the angle between the
horizontal line of sight and the object from the observer. Another common mistake is to write the tangent formula wrong when substituting, for example, you might write, \[\tan \angle AEB = \dfrac{Y}{h}\], which is an error.
Let us represent the scenario with a diagram.
Let AB be the tower with the man standing on the top of the tower at A. Let D be the point when the angle of depression is \[30^\circ \] and E be the point where the angle of depression is \[60^\circ \].
Let line segment DE be equal to X and line segment EB be equal to Y.
Let the speed of the car be \[v\], which is a constant since the car travels with a uniform speed.
We know that distance covered is speed times time, that is:
\[d = v \times t{\text{ }}............{\text{(1)}}\]
where \[d\] is the distance covered, \[v\] is the speed and \[t\] is the time taken.
The car takes 6 seconds to go from D to E.
Hence, using equation (1), we obtain the value of X as follows:
\[X = v \times 6\]
\[X = 6v{\text{ }}...........{\text{(2)}}\]
Consider \[\Delta ADB\], we know that tangent of an angle is the ratio of opposite side by adjacent side, therefore we have:
\[\tan \angle ADB = \dfrac{{AB}}{{DB}}\]
\[\tan 30^\circ = \dfrac{h}{{X + Y}}\]
Using \[\tan 30^\circ = \dfrac{1}{{\sqrt 3 }}\], we get:
\[\dfrac{1}{{\sqrt 3 }} = \dfrac{h}{{X + Y}}\]
Cross multiplying, we have:
\[X + Y = \sqrt 3 {\text{ }}h{\text{ }}............{\text{(3)}}\]
Similarly, consider \[\Delta AEB\] and applying tangent formula to \[\angle AEB\] , we have:
\[\tan \angle AEB = \dfrac{{AB}}{{EB}}\]
\[\tan 60^\circ = \dfrac{h}{Y}\]
Using \[\tan 60^\circ = \sqrt 3 \] , we get:
\[\sqrt 3 = \dfrac{h}{Y}\]
\[h = \sqrt 3 {\text{Y }}..........{\text{(4)}}\]
Now, substituting equation (4) in equation (3), we get:
\[X + Y = \sqrt 3 \left( {\sqrt 3 Y} \right)\]
\[X + Y = 3Y\]
Solving for \[Y\] in terms of \[X\] , we get:
\[X = 3Y - Y\]
\[X = 2Y\]
\[Y = \dfrac{X}{2}\]
Using equation (2), we get \[Y\] in terms of \[v\] .
\[Y = \dfrac{{6v}}{2}\]
\[Y = 3v{\text{ }}..........{\text{(5)}}\]
Now, let us use equation (1) to find the time calculated to reach the foot of the tower from point E.
\[t = \dfrac{d}{v}\]
Here, the distance \[d\] is \[Y\] .
\[t = \dfrac{Y}{v}\]
Using equation (5), we get the time taken as follows:
\[t = \dfrac{{3v}}{v}\]
\[t = 3{\text{ sec}}\]
Therefore, it takes 3 seconds to reach the foot of the tower from the given point.
Hence, the correct answer is 3 seconds.
Note: You might get confused with the term angle of depression. It is the angle between the
horizontal line of sight and the object from the observer. Another common mistake is to write the tangent formula wrong when substituting, for example, you might write, \[\tan \angle AEB = \dfrac{Y}{h}\], which is an error.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE