Answer
Verified
496.8k+ views
Hint: To solve the question, we have to apply the properties of parallel lines to calculate the tangent line. Thus, the parallel line and the curve have a common point. To calculate the point, apply the formula of slope of line.
Complete step-by-step answer:
We know that the line parallel to the line \[ax+by+c=0\] is \[ax+by+d=0\].
Thus, the line parallel to the line \[2x-y+5=0\] is \[2x-y+d=0\]
Thus, the line \[2x-y+d=0\] is tangent to the curve \[{{y}^{2}}=4x+5\] .
We know that the slope of line \[ax+by+c=0\] is equal to \[\dfrac{-a}{b}\]
On comparing the general equation of line and he tangent line, we get
a = 2, b = -1, c = d
Thus, the slope of line \[2x-y+d=0\] is equal to \[\dfrac{-2}{-1}=2\] ….. (1)
The slope of tangent to the curve is given by the derivative of the curve.
Thus, we get
\[\dfrac{d\left( {{y}^{2}} \right)}{dx}=\dfrac{d\left( 4x+5 \right)}{dx}\]
We know the formula \[\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}},\dfrac{d\left( cf(x) \right)}{dx}=c\dfrac{d\left( f(x) \right)}{dx},\dfrac{dc}{dx}=0\] where c is a constant.
By substituting the above formulae, we get
\[2y\dfrac{dy}{dx}=4\dfrac{dx}{dx}+0\]
\[2y\dfrac{dy}{dx}=4\]
\[\dfrac{dy}{dx}=\dfrac{4}{2y}=\dfrac{2}{y}\]
Thus, the slope of tangent to the curve is equal to \[\dfrac{2}{y}\]
From equation (1) we get
\[\Rightarrow 2=\dfrac{2}{y}\]
\[y=\dfrac{2}{2}=1\]
Thus, the value of y = 1
Since the point of contact lie on the curve, on substituting the above value of y we get
\[{{1}^{2}}=4x+5\]
\[1=4x+5\]
\[1-5=4x\]
\[-4=4x\]
\[x=\dfrac{-4}{4}=-1\]
Thus, the point of contact of the tangent line and the given curve is (-1,1)
Hence, option (d) is the right choice.
Note: The problem of mistake can be not analysing that the slope of the tangent line is equal to slope of the tangent to the curve. The other possibility of mistake is not being able to apply the formula of differentiation to solve.
Complete step-by-step answer:
We know that the line parallel to the line \[ax+by+c=0\] is \[ax+by+d=0\].
Thus, the line parallel to the line \[2x-y+5=0\] is \[2x-y+d=0\]
Thus, the line \[2x-y+d=0\] is tangent to the curve \[{{y}^{2}}=4x+5\] .
We know that the slope of line \[ax+by+c=0\] is equal to \[\dfrac{-a}{b}\]
On comparing the general equation of line and he tangent line, we get
a = 2, b = -1, c = d
Thus, the slope of line \[2x-y+d=0\] is equal to \[\dfrac{-2}{-1}=2\] ….. (1)
The slope of tangent to the curve is given by the derivative of the curve.
Thus, we get
\[\dfrac{d\left( {{y}^{2}} \right)}{dx}=\dfrac{d\left( 4x+5 \right)}{dx}\]
We know the formula \[\dfrac{d\left( {{x}^{n}} \right)}{dx}=n{{x}^{n-1}},\dfrac{d\left( cf(x) \right)}{dx}=c\dfrac{d\left( f(x) \right)}{dx},\dfrac{dc}{dx}=0\] where c is a constant.
By substituting the above formulae, we get
\[2y\dfrac{dy}{dx}=4\dfrac{dx}{dx}+0\]
\[2y\dfrac{dy}{dx}=4\]
\[\dfrac{dy}{dx}=\dfrac{4}{2y}=\dfrac{2}{y}\]
Thus, the slope of tangent to the curve is equal to \[\dfrac{2}{y}\]
From equation (1) we get
\[\Rightarrow 2=\dfrac{2}{y}\]
\[y=\dfrac{2}{2}=1\]
Thus, the value of y = 1
Since the point of contact lie on the curve, on substituting the above value of y we get
\[{{1}^{2}}=4x+5\]
\[1=4x+5\]
\[1-5=4x\]
\[-4=4x\]
\[x=\dfrac{-4}{4}=-1\]
Thus, the point of contact of the tangent line and the given curve is (-1,1)
Hence, option (d) is the right choice.
Note: The problem of mistake can be not analysing that the slope of the tangent line is equal to slope of the tangent to the curve. The other possibility of mistake is not being able to apply the formula of differentiation to solve.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE