Answer
Verified
483.3k+ views
Hint: We will first form a relation between marks obtained in each subject and passing marks of each subject. Then we will use that relation to check if the student passed the subject of not.
Complete Step-by-Step solution:
We are given that marks obtained by a student in five different subjects are in the ratio $10:9:8:7:6$.
So, there will be a factor which will be multiplied by all the terms of the given ratio to obtain actual marks of the student in each subject. Let this factor be $x$.
So, the marks obtained by student in five subjects will be $10x,9x,8x,7x,6x.$
Therefore, the total marks of the student = $10x+9x+8x+7x+6x=40x.$
Let, maximum marks in each subject be $y$.
Therefor, maximum of total marks $=y+y+y+y+y=5y.$
Also, percentage of marks is given by the formula,
\[\text{Percentage of marks= }\dfrac{\text{Total marks obtained}}{\text{Maximum total marks}}\times 100%\cdots \cdots \left( i \right)\].
Here, we have,
Percentage of marks of the student = $60%.$
Total marks of the student = $40x.$
Maximum total marks of the student = $5y.$
Therefore, putting all this values in equation $\left( i \right)$, we get,
$60%=\dfrac{40x}{5y}\times 100%$
$\Rightarrow 60=\dfrac{4000x}{5y}$
$\Rightarrow 60=\dfrac{800x}{y}$
Multiplying $y$ on both sides of the equation, we get,
$\Rightarrow 60y=800x$
Dividing 60 on both sides of the equation, we get,
$\Rightarrow y=\dfrac{800x}{60}$
$\Rightarrow y=\dfrac{40}{3}x\cdots \cdots \left( ii \right)$
Now, according to question,
Passing marks of each subject = $50%\times $ maximum marks of the subject.
\[=50%\times y\]
$=\dfrac{50}{100}\times y$
$=\dfrac{1}{2}y.$
Substituting value of $y$ from equation $\left( ii \right)$, we get,
Passing marks of each subject $=\dfrac{1}{2}\times \dfrac{40}{3}x=\dfrac{20}{3}x=6.67x$.
Therefore, marks obtained in four of the subjects, which is, $10x,9x,8x,7x$ is more than passing marks.
Hence, the student passed in 4 subjects.
Therefore, the correct answer is option (c).
Note: In this question you may get struct in finding the value of $x$. Avoid doing that, as here we don’t need an exact value of $x$ because the question is not to find the marks obtained, but just to find if a student passed the subject or not.
Complete Step-by-Step solution:
We are given that marks obtained by a student in five different subjects are in the ratio $10:9:8:7:6$.
So, there will be a factor which will be multiplied by all the terms of the given ratio to obtain actual marks of the student in each subject. Let this factor be $x$.
So, the marks obtained by student in five subjects will be $10x,9x,8x,7x,6x.$
Therefore, the total marks of the student = $10x+9x+8x+7x+6x=40x.$
Let, maximum marks in each subject be $y$.
Therefor, maximum of total marks $=y+y+y+y+y=5y.$
Also, percentage of marks is given by the formula,
\[\text{Percentage of marks= }\dfrac{\text{Total marks obtained}}{\text{Maximum total marks}}\times 100%\cdots \cdots \left( i \right)\].
Here, we have,
Percentage of marks of the student = $60%.$
Total marks of the student = $40x.$
Maximum total marks of the student = $5y.$
Therefore, putting all this values in equation $\left( i \right)$, we get,
$60%=\dfrac{40x}{5y}\times 100%$
$\Rightarrow 60=\dfrac{4000x}{5y}$
$\Rightarrow 60=\dfrac{800x}{y}$
Multiplying $y$ on both sides of the equation, we get,
$\Rightarrow 60y=800x$
Dividing 60 on both sides of the equation, we get,
$\Rightarrow y=\dfrac{800x}{60}$
$\Rightarrow y=\dfrac{40}{3}x\cdots \cdots \left( ii \right)$
Now, according to question,
Passing marks of each subject = $50%\times $ maximum marks of the subject.
\[=50%\times y\]
$=\dfrac{50}{100}\times y$
$=\dfrac{1}{2}y.$
Substituting value of $y$ from equation $\left( ii \right)$, we get,
Passing marks of each subject $=\dfrac{1}{2}\times \dfrac{40}{3}x=\dfrac{20}{3}x=6.67x$.
Therefore, marks obtained in four of the subjects, which is, $10x,9x,8x,7x$ is more than passing marks.
Hence, the student passed in 4 subjects.
Therefore, the correct answer is option (c).
Note: In this question you may get struct in finding the value of $x$. Avoid doing that, as here we don’t need an exact value of $x$ because the question is not to find the marks obtained, but just to find if a student passed the subject or not.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE