A student is experimenting with a resonance tube apparatus in a Physics lab to find the speed of sound at room temperature. He got resonating lengths of air columns as $17cm$ and $51cm$, using tuning forks of frequency $512Hz$. Find speed of sound at the room temperature and specify, whether the side water reservoir was moved upward or downward to obtain the second resonance ($51cm$)?
A. $348{\text{ }}m/s$, downwards
B. $348{\text{ }}m/s$, upwards
C. $332{\text{ }}m/s$, downwards
D. $332{\text{ }}m/s$, upwards
Answer
Verified
474.9k+ views
Hint: The resonance tube is considered to be an open organ pipe. So, for first resonance, there is one node and one antinode, whose length is a quarter of the wavelength of the sound wave. The water inside the reservoir will move upward, as the resonances increase, successively.
Formula used:
${f_1} = \dfrac{{{v_s}}}{{4{L_1}}}$
Complete answer:
First let us draw a rough diagram of resonance tube apparatus. It is mentioned in the problem that the student got resonating columns at $17cm$ and $51cm$. This indicates that at $17cm$ the first resonance occurs and at $51cm$ the second resonance occurs.
The condition for first resonance is
${f_1} = \dfrac{{{v_s}}}{{4{L_1}}}$
Where
${f_1}$ is the first resonance frequency
${v_s}$ is the velocity of the sound
${L_1}$ is the length at which first resonance occurs
We have ${f_1} = {\text{ }}512Hz$ and ${L_1} = {\text{ }}17cm$. Substituting this in the first resonance condition
$\eqalign{
& {f_1} = \dfrac{{{v_s}}}{{4{L_1}}} \Rightarrow {v_s} = {f_1} \times 4{L_1} \cr
& \Rightarrow {v_s} = 512 \times 4\left( {17 \times 1{0^{ - 2}}} \right) = 348.16m{s^{ - 1}} \cr
& \therefore {v_s} = 348.16m{s^{ - 1}} \sim 348m{s^{ - 1}} \cr} $
Now, for the second part of the answer, we have actually increased the air column compared to the first resonance. So, the water level would have reduced, in the resonance tube. This will compensate as an increase of water level in the side water reservoir. This shows as an upward movement of water in the side water reservoir.
So, the correct answer is “Option B”.
Note:
The above problem can also be solved using the condition for second resonance i.e.,
${f_2} = \dfrac{{3{v_s}}}{{4{L_2}}}$
Where
${f_2}$ is the second resonance frequency
${v_s}$ is the velocity of the sound
${L_2}$ is the length at which second resonance occurs.
Substituting the values given, we have
$\eqalign{
& {f_2} = \dfrac{{3{v_s}}}{{4{L_2}}} \cr
& \Rightarrow {v_s} = {f_2} \times \dfrac{{4{L_2}}}{3} \cr
& \Rightarrow {v_s} = 512Hz \times \dfrac{{4 \times \left( {51 \times {{10}^{ - 2}}} \right)}}{3} =348.16m{s^{ - 1}} \cr
& \therefore {v_s} = 348.16m{s^{ - 1}} \sim 348m{s^{ - 1}} \cr} $
Formula used:
${f_1} = \dfrac{{{v_s}}}{{4{L_1}}}$
Complete answer:
First let us draw a rough diagram of resonance tube apparatus. It is mentioned in the problem that the student got resonating columns at $17cm$ and $51cm$. This indicates that at $17cm$ the first resonance occurs and at $51cm$ the second resonance occurs.
The condition for first resonance is
${f_1} = \dfrac{{{v_s}}}{{4{L_1}}}$
Where
${f_1}$ is the first resonance frequency
${v_s}$ is the velocity of the sound
${L_1}$ is the length at which first resonance occurs
We have ${f_1} = {\text{ }}512Hz$ and ${L_1} = {\text{ }}17cm$. Substituting this in the first resonance condition
$\eqalign{
& {f_1} = \dfrac{{{v_s}}}{{4{L_1}}} \Rightarrow {v_s} = {f_1} \times 4{L_1} \cr
& \Rightarrow {v_s} = 512 \times 4\left( {17 \times 1{0^{ - 2}}} \right) = 348.16m{s^{ - 1}} \cr
& \therefore {v_s} = 348.16m{s^{ - 1}} \sim 348m{s^{ - 1}} \cr} $
Now, for the second part of the answer, we have actually increased the air column compared to the first resonance. So, the water level would have reduced, in the resonance tube. This will compensate as an increase of water level in the side water reservoir. This shows as an upward movement of water in the side water reservoir.
So, the correct answer is “Option B”.
Note:
The above problem can also be solved using the condition for second resonance i.e.,
${f_2} = \dfrac{{3{v_s}}}{{4{L_2}}}$
Where
${f_2}$ is the second resonance frequency
${v_s}$ is the velocity of the sound
${L_2}$ is the length at which second resonance occurs.
Substituting the values given, we have
$\eqalign{
& {f_2} = \dfrac{{3{v_s}}}{{4{L_2}}} \cr
& \Rightarrow {v_s} = {f_2} \times \dfrac{{4{L_2}}}{3} \cr
& \Rightarrow {v_s} = 512Hz \times \dfrac{{4 \times \left( {51 \times {{10}^{ - 2}}} \right)}}{3} =348.16m{s^{ - 1}} \cr
& \therefore {v_s} = 348.16m{s^{ - 1}} \sim 348m{s^{ - 1}} \cr} $
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE