Answer
Verified
470.1k+ views
Hint: This is a simple arithmetic problem. We will assume the first prize as some variable. Then other three prize values can be considered based on the given constraints in the problem. Further single variable linear equations can be formed and solved accordingly.
Complete step-by-step answer:
Let us suppose that the amount of the first prize be INR x. Since each prize value after the first prize is INR 200 less than the preceding prize. Thus, the amounts of the four prizes are in arithmetic progression means AP.
Thus according to the question,
Amount of the second prize will be x- 200.
Amount of the third prize will be x - 200 - 200 = x - 400.
Amount of the fourth prize will be x- 400 – 200 = x-600.
Now, as given in the question that the total sum of prizes is INR 2800.
So by the condition given in the question, we have
\[
x + \left( {x - 200} \right) + \left( {x - 400} \right) + \left( {x - 600} \right) = 2800 \\
\Rightarrow 4x - 1200 = 2800 \\
\Rightarrow 4x = 4000 \\
\Rightarrow x = 1000 \\
\]
Hence, we got the value of an unknown variable of the above equation, x as 1000.
Amount of the first prize will be, x = INR 1000
Amount of the second prize will be, x- 200 = 1000-200 = INR 800.
Amount of the third prize will be, x – 400 = 1000-400= INR 600.
Amount of the fourth prize will be, x- 600 = 1000-600= INR 400.
Note: Simple algebraic concepts can be utilized for framing the linear equations having one unknown variable. Such equations after solution will give the value of unknown variables. Various mathematical transformations and rules will help to get solutions to such equations.
* Linear equations in one variable are in the form $ax+b=0$.
* Linear equations in two variables are in the form $ax+by+c=0$.
Complete step-by-step answer:
Let us suppose that the amount of the first prize be INR x. Since each prize value after the first prize is INR 200 less than the preceding prize. Thus, the amounts of the four prizes are in arithmetic progression means AP.
Thus according to the question,
Amount of the second prize will be x- 200.
Amount of the third prize will be x - 200 - 200 = x - 400.
Amount of the fourth prize will be x- 400 – 200 = x-600.
Now, as given in the question that the total sum of prizes is INR 2800.
So by the condition given in the question, we have
\[
x + \left( {x - 200} \right) + \left( {x - 400} \right) + \left( {x - 600} \right) = 2800 \\
\Rightarrow 4x - 1200 = 2800 \\
\Rightarrow 4x = 4000 \\
\Rightarrow x = 1000 \\
\]
Hence, we got the value of an unknown variable of the above equation, x as 1000.
Amount of the first prize will be, x = INR 1000
Amount of the second prize will be, x- 200 = 1000-200 = INR 800.
Amount of the third prize will be, x – 400 = 1000-400= INR 600.
Amount of the fourth prize will be, x- 600 = 1000-600= INR 400.
Note: Simple algebraic concepts can be utilized for framing the linear equations having one unknown variable. Such equations after solution will give the value of unknown variables. Various mathematical transformations and rules will help to get solutions to such equations.
* Linear equations in one variable are in the form $ax+b=0$.
* Linear equations in two variables are in the form $ax+by+c=0$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE