Answer
Verified
495.3k+ views
Hint: We can assume the amount of first prize to be some positive value x. Now we can write the amount of second prize to be 20 less than x, third amount to be 20 less than the second prize and so on. Sum of all these will be equal to Rs. 700.
“Complete step-by-step answer:”
Let us assume the amount of first prize to be Rs. x. Now we can write the amount of other prizes to be following-
Second prize= $x-20$
Third prize=(Second prize)-20
\[\begin{array}{*{35}{l}}
=\left( x-20 \right)-20 \\
~=x-2\cdot 20 \\
\end{array}\]
Fourth prize=(Third prize)-20
$\begin{align}
& =(x-2\cdot 20)-20 \\
& =x-3\cdot 20 \\
\end{align}$
Likewise, we can write the fifth, sixth and seventh prize to be $(x-4\cdot 20)$ , $(x-5\cdot 20)$ and $(x-6\cdot 20)$ .
Now the sum of all of these prizes is Rs. 700. We can write this statement as an equation which is:
$x+(x-20)+(x-2\cdot 20)+(x-3\cdot 20)+(x-4\cdot 20)+(x-5\cdot 20)+(x-6\cdot 20)=700$
On simplifying we get,
$\begin{align}
& 7\cdot x-(1+2+3+4+5+6)\cdot 20=700 \\
& \Rightarrow 7x-21\times 20=700 \\
\end{align}$
Dividing both sides with 7 we have
$\begin{align}
& x-3\times 20=100 \\
& \Rightarrow x-60=100 \\
& \Rightarrow x=160 \\
\end{align}$
Therefore, the first prize is Rs. 160
Now we can calculate the other prizes as follows-
First prize= $Rs.160$
Second prize= $160-20=Rs.140$
Third prize= $140-20=Rs.120$
Fourth prize= $120-20=Rs.100$
Fifth prize= $100-20=Rs.80$
Sixth prize= $80-20=Rs.60$
Seventh prize= $60-20=Rs.40$
Note: For summation of $1+2+3+4+5+6$ instead of directly adding we could have used the formula $\sum\limits_{r=1}^{n}{r}=\dfrac{n(n+1)}{2}$ . Using this formula the summation $1+2+3+4+5+6$ can be written as $\sum\limits_{r=1}^{6}{r}=\dfrac{6\times 7}{2}=21$ which we can check that it is correct.
“Complete step-by-step answer:”
Let us assume the amount of first prize to be Rs. x. Now we can write the amount of other prizes to be following-
Second prize= $x-20$
Third prize=(Second prize)-20
\[\begin{array}{*{35}{l}}
=\left( x-20 \right)-20 \\
~=x-2\cdot 20 \\
\end{array}\]
Fourth prize=(Third prize)-20
$\begin{align}
& =(x-2\cdot 20)-20 \\
& =x-3\cdot 20 \\
\end{align}$
Likewise, we can write the fifth, sixth and seventh prize to be $(x-4\cdot 20)$ , $(x-5\cdot 20)$ and $(x-6\cdot 20)$ .
Now the sum of all of these prizes is Rs. 700. We can write this statement as an equation which is:
$x+(x-20)+(x-2\cdot 20)+(x-3\cdot 20)+(x-4\cdot 20)+(x-5\cdot 20)+(x-6\cdot 20)=700$
On simplifying we get,
$\begin{align}
& 7\cdot x-(1+2+3+4+5+6)\cdot 20=700 \\
& \Rightarrow 7x-21\times 20=700 \\
\end{align}$
Dividing both sides with 7 we have
$\begin{align}
& x-3\times 20=100 \\
& \Rightarrow x-60=100 \\
& \Rightarrow x=160 \\
\end{align}$
Therefore, the first prize is Rs. 160
Now we can calculate the other prizes as follows-
First prize= $Rs.160$
Second prize= $160-20=Rs.140$
Third prize= $140-20=Rs.120$
Fourth prize= $120-20=Rs.100$
Fifth prize= $100-20=Rs.80$
Sixth prize= $80-20=Rs.60$
Seventh prize= $60-20=Rs.40$
Note: For summation of $1+2+3+4+5+6$ instead of directly adding we could have used the formula $\sum\limits_{r=1}^{n}{r}=\dfrac{n(n+1)}{2}$ . Using this formula the summation $1+2+3+4+5+6$ can be written as $\sum\limits_{r=1}^{6}{r}=\dfrac{6\times 7}{2}=21$ which we can check that it is correct.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE