Answer
Verified
468.3k+ views
Hint: The vectors parallel to the same plane or lie on the same plane are called coplanar vectors. The scalar triple product of a system of vectors will be zero only if they lie on the same plane.
Complete step by step answer:
The coplanar vectors are the vectors the lie on the same plane or are parallel to the same plane. Given, a system of vectors is said to be coplanar if their scalar triple product is zero. The scalar triple product can be written as $\left[ {\overrightarrow {{\text{a}}{\text{.}}} \overrightarrow {\text{b}} .\overrightarrow {\text{c}} } \right]$ or$\overrightarrow {{\text{a}}{\text{.}}} \left( {\overrightarrow {\text{b}} \times \overrightarrow {\text{c}} } \right)$ .Here, cross product of two vectors happens so a general vector (let us say $\overrightarrow {\text{d}} $ ) is generated and that vector has dot product with the third vector. The general vector generated ($\overrightarrow {\text{d}} $) will be perpendicular to the third vector $\overrightarrow {\text{a}} $ as the cross product of 2 vectors$\left( {\overrightarrow {\text{b}} \times \overrightarrow {\text{c}} } \right)$ give a perpendicular vector. The dot product of two vectors is zero if they are perpendicular to each other which means that $\overrightarrow {{\text{a}}{\text{.}}} \overrightarrow {\text{d}} = 0$ .So I statement is true.
Now given, a system of vectors is said to be coplanar if they are linearly dependent. If the vectors lie on the same plane then we can easily find ${\text{a,b,c}}$ and if two vectors are not parallel then the third vector can be expressed in the terms of the other two vectors. Therefore, they are linearly dependent. So II statement is also correct.
Hence the correct answer is ‘C’.
Note: The conditions for vectors to be coplanar if there are 3 vectors, is- a) if their scalar triple product is zero, b) if they are linearly dependent and c) In case of n vectors if no more than two vectors are linearly independent.
Complete step by step answer:
The coplanar vectors are the vectors the lie on the same plane or are parallel to the same plane. Given, a system of vectors is said to be coplanar if their scalar triple product is zero. The scalar triple product can be written as $\left[ {\overrightarrow {{\text{a}}{\text{.}}} \overrightarrow {\text{b}} .\overrightarrow {\text{c}} } \right]$ or$\overrightarrow {{\text{a}}{\text{.}}} \left( {\overrightarrow {\text{b}} \times \overrightarrow {\text{c}} } \right)$ .Here, cross product of two vectors happens so a general vector (let us say $\overrightarrow {\text{d}} $ ) is generated and that vector has dot product with the third vector. The general vector generated ($\overrightarrow {\text{d}} $) will be perpendicular to the third vector $\overrightarrow {\text{a}} $ as the cross product of 2 vectors$\left( {\overrightarrow {\text{b}} \times \overrightarrow {\text{c}} } \right)$ give a perpendicular vector. The dot product of two vectors is zero if they are perpendicular to each other which means that $\overrightarrow {{\text{a}}{\text{.}}} \overrightarrow {\text{d}} = 0$ .So I statement is true.
Now given, a system of vectors is said to be coplanar if they are linearly dependent. If the vectors lie on the same plane then we can easily find ${\text{a,b,c}}$ and if two vectors are not parallel then the third vector can be expressed in the terms of the other two vectors. Therefore, they are linearly dependent. So II statement is also correct.
Hence the correct answer is ‘C’.
Note: The conditions for vectors to be coplanar if there are 3 vectors, is- a) if their scalar triple product is zero, b) if they are linearly dependent and c) In case of n vectors if no more than two vectors are linearly independent.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE