Answer
Verified
408.8k+ views
Hint: We will make necessary assumptions and then divide the problem in two parts, the number of taxis already on the way when this taxi departs and the number of taxis that will depart in the time this taxi reaches it destination and then we will add them all.
Complete step-by-step answer:
We will first assume that 2 hours have passed since the first taxi started from X. Let us consider one taxi starting from Y at this exact moment, at this moment of time there will be taxis at 10-minute intervals along the way. Now all the taxis that are in the way and started from X including the taxi that just reached Y and all the taxis that will start from X till the time this taxi from Y reaches X will cross this taxi from Y at some point of time. So, first we will calculate the number of taxis that are in the way.
As all the taxis are 10 minutes apart and it takes 2 hours for a one-way trip, there will be 11 taxis on the way. The taxi that reached Y and the taxi that will just begin at X are not counted as they are not enroute. After this taxi starts and takes 2 hours to reach X, 12 more taxis must have departed from X which will all cross this taxi from Y. So, in total 23 taxis coming from X will meet each taxi coming from Y and vice-versa.
So, the correct answer is “Option D”.
Note:
We can also solve this problem using relative velocity. The relative velocity of each taxi with reference to a taxi coming from the other side. So, there are only 5-minute intervals in crossing each taxi. In the journey of 2 hours, there are 24 5-minute intervals. But in the last interval no taxi will cross, so we get the same answer i.e. 23.
Complete step-by-step answer:
We will first assume that 2 hours have passed since the first taxi started from X. Let us consider one taxi starting from Y at this exact moment, at this moment of time there will be taxis at 10-minute intervals along the way. Now all the taxis that are in the way and started from X including the taxi that just reached Y and all the taxis that will start from X till the time this taxi from Y reaches X will cross this taxi from Y at some point of time. So, first we will calculate the number of taxis that are in the way.
As all the taxis are 10 minutes apart and it takes 2 hours for a one-way trip, there will be 11 taxis on the way. The taxi that reached Y and the taxi that will just begin at X are not counted as they are not enroute. After this taxi starts and takes 2 hours to reach X, 12 more taxis must have departed from X which will all cross this taxi from Y. So, in total 23 taxis coming from X will meet each taxi coming from Y and vice-versa.
So, the correct answer is “Option D”.
Note:
We can also solve this problem using relative velocity. The relative velocity of each taxi with reference to a taxi coming from the other side. So, there are only 5-minute intervals in crossing each taxi. In the journey of 2 hours, there are 24 5-minute intervals. But in the last interval no taxi will cross, so we get the same answer i.e. 23.
Recently Updated Pages
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
For which of the following reactions H is equal to class 11 chemistry JEE_Main
For the redox reaction MnO4 + C2O42 + H + to Mn2 + class 11 chemistry JEE_Main
In the reaction 2FeCl3 + H2S to 2FeCl2 + 2HCl + S class 11 chemistry JEE_Main
One mole of a nonideal gas undergoes a change of state class 11 chemistry JEE_Main
A stone is projected with speed 20 ms at angle 37circ class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE