
A thermally insulated rigid container of the one-litre volume contains a diatomic ideal gas at room temperature. A small paddle installed inside the container is rotated from the outside such that the pressure rises by ${{10}^{5}}$ Pa. The change in internal energy is to:
A) 0 J
B) 67 J
C) 150 J
D) 250 J
Answer
474.6k+ views
Hint: The heat capacity at constant volume (${{C}_{V}}$) for diatomic gas is $\dfrac{5}{2}R$
For ideal gas, PV = nRT
Where P is pressure, V is volume is temperature is number of moles and R is a constant Rydberg constant.
Complete Solution :
So in the question it is given that, there is a thermally insulated container with volume of 1L which contains diatomic gas and there is a change in pressure due to the action of a small paddle installed inside the container. We have to find the internal energy, for that,
We know the equation relating internal energy, molal heat capacity of gas at constant volume ${{C}_{V}}$, temperature and number of moles of gas as-
\[\Delta U=n{{C}_{V}}\Delta T\]
- Here volume remains the same. There is only change in pressure parameter. As pressure changes which results in the change in temperature also.
The heat capacity at constant volume (${{C}_{V}}$) for diatomic gas is $\dfrac{5}{2}$R
So the equation for internal energy becomes,
-\[\Delta U=\dfrac{5}{2}nR\Delta T\]
By ideal gas equation, $PV = nRT$
But in this case only volume changes so the equation is written as,
-$\Delta PV=nR\Delta T$
Comparing the equation of internal energy and ideal gas equation we can rearrange and write the equation as,
$\Delta U = \dfrac{5}{2}\Delta PV$
Now substitute the values,
Pressure (P) = ${{10}^{5}}Pa$
Volume (V) = 1L = $\dfrac{1}{1000}{{m}^{3}}={{10}^{-3}}{{m}^{3}}$
Substituting the values we get,
\[\Delta U=\dfrac{5}{2}\times {{10}^{5}}\times \dfrac{1}{{{10}^{-3}}}\]
\[\Delta U=\dfrac{5}{2}\times 100 = 250J\]
So, the correct answer is “Option D”.
Note: If in the place of diatomic gas, monoatomic was given then the value of ${{C}_{V}}$ is $\dfrac{3R}{2}$
Values must be substituted in the final equation, after converting all the values to standard form.
For ideal gas, PV = nRT
Where P is pressure, V is volume is temperature is number of moles and R is a constant Rydberg constant.
Complete Solution :
So in the question it is given that, there is a thermally insulated container with volume of 1L which contains diatomic gas and there is a change in pressure due to the action of a small paddle installed inside the container. We have to find the internal energy, for that,
We know the equation relating internal energy, molal heat capacity of gas at constant volume ${{C}_{V}}$, temperature and number of moles of gas as-
\[\Delta U=n{{C}_{V}}\Delta T\]
- Here volume remains the same. There is only change in pressure parameter. As pressure changes which results in the change in temperature also.
The heat capacity at constant volume (${{C}_{V}}$) for diatomic gas is $\dfrac{5}{2}$R
So the equation for internal energy becomes,
-\[\Delta U=\dfrac{5}{2}nR\Delta T\]
By ideal gas equation, $PV = nRT$
But in this case only volume changes so the equation is written as,
-$\Delta PV=nR\Delta T$
Comparing the equation of internal energy and ideal gas equation we can rearrange and write the equation as,
$\Delta U = \dfrac{5}{2}\Delta PV$
Now substitute the values,
Pressure (P) = ${{10}^{5}}Pa$
Volume (V) = 1L = $\dfrac{1}{1000}{{m}^{3}}={{10}^{-3}}{{m}^{3}}$
Substituting the values we get,
\[\Delta U=\dfrac{5}{2}\times {{10}^{5}}\times \dfrac{1}{{{10}^{-3}}}\]
\[\Delta U=\dfrac{5}{2}\times 100 = 250J\]
So, the correct answer is “Option D”.
Note: If in the place of diatomic gas, monoatomic was given then the value of ${{C}_{V}}$ is $\dfrac{3R}{2}$
Values must be substituted in the final equation, after converting all the values to standard form.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE

Describe the effects of the Second World War class 11 social science CBSE
