Answer
Verified
412.8k+ views
Hint :Here, the magnet given is acting like a rod so we have to use the concept of moment of inertia of rod along the axis of rotation from the middle of the bar magnet. Here, the extra property is the magnetic moment of the bar magnet. And we have to find the ratio between original and after cutting off the bar magnet from the middle as shown in the figure given.
Complete Step By Step Answer:
When the magnet is not cut from the between into two equal parts as shown in figure above.
Let $ L $ be the length of the magnet and $ M $ be the magnetic moment of the magnet.
Let pole strength be $ S $ and $ m $ be the mass of the magnet.
According to given data,
Initial moment of inertia $ = m{L^2} $
Thus, initial magnetic moment $ = S \times 2L $
Their ratios $ = \dfrac{{mL}}{{2S}} $ …….. $ (1) $
After cutting the magnet pole strength remains the same.
Thus, final moment of inertia $ = \dfrac{m}{2}{\left( {\dfrac{L}{2}} \right)^2} = \dfrac{{m{L^2}}}{8} $
Magnetic moment $ = S \times 2\left( {\dfrac{L}{2}} \right) = S \times L $
Now, their ratios are given by $ = \dfrac{{mL}}{{8S}} $ ……. $ (2) $
For the ratios of magnetic moment we have
Ratios of $ (1) $ and $ (2) $ $ = \dfrac{{\dfrac{{mL}}{{8S}}}}{{\dfrac{{mL}}{{2S}}}} = \dfrac{1}{4} $
Thus magnetic moment of each part will become $ 1:4 $
The correct answer is the option B.
Note :
We know how to calculate the moment of inertia of a rod that is why it is easier to calculate the moment of inertia of a bar magnet as it represents rod-like structure. Also magnetic moment is the moment calculated as a product of strength of pole and twice the length. Be careful while calculating.
Complete Step By Step Answer:
When the magnet is not cut from the between into two equal parts as shown in figure above.
Let $ L $ be the length of the magnet and $ M $ be the magnetic moment of the magnet.
Let pole strength be $ S $ and $ m $ be the mass of the magnet.
According to given data,
Initial moment of inertia $ = m{L^2} $
Thus, initial magnetic moment $ = S \times 2L $
Their ratios $ = \dfrac{{mL}}{{2S}} $ …….. $ (1) $
After cutting the magnet pole strength remains the same.
Thus, final moment of inertia $ = \dfrac{m}{2}{\left( {\dfrac{L}{2}} \right)^2} = \dfrac{{m{L^2}}}{8} $
Magnetic moment $ = S \times 2\left( {\dfrac{L}{2}} \right) = S \times L $
Now, their ratios are given by $ = \dfrac{{mL}}{{8S}} $ ……. $ (2) $
For the ratios of magnetic moment we have
Ratios of $ (1) $ and $ (2) $ $ = \dfrac{{\dfrac{{mL}}{{8S}}}}{{\dfrac{{mL}}{{2S}}}} = \dfrac{1}{4} $
Thus magnetic moment of each part will become $ 1:4 $
The correct answer is the option B.
Note :
We know how to calculate the moment of inertia of a rod that is why it is easier to calculate the moment of inertia of a bar magnet as it represents rod-like structure. Also magnetic moment is the moment calculated as a product of strength of pole and twice the length. Be careful while calculating.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Explain the Basics of Computer and Number System?
Class 11 Question and Answer - Your Ultimate Solutions Guide
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE
10 examples of friction in our daily life
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE