Answer
Verified
375k+ views
Hint:Here we will solve this question in two cases in which the first one will be When the space between the lens and mirror is filled by water of refractive index ${\mu _1}$ and in second one where the refractive index will be ${\mu _2}$ . The light retraced its path if it is incident normally on a mirror. The ray after refraction through the lens and the liquid are parallel. We will apply the general thin lens equation with parameters.
Formula used:
$\dfrac{1}{f} = (n - 1)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
Where, $n$ is the refractive index, $R_1$ and $R_2$ are the radii of curvature.,$R_1$ is denoted as the surface very near to the light source and $R_2$ is denoted as the surface very far from the light source.
Complete step by step answer:
According to the question, let ${f_1}$ be the focal length of a convex lens; radius of curvature of each curved face is $R$.
$\dfrac{1}{{{f_1}}} = (m - 1)\left( {\dfrac{1}{R} - \left( {\dfrac{1}{{ - R}}} \right)} \right) \\
\Rightarrow \dfrac{1}{{{f_1}}}= (\mu - 1)\dfrac{2}{R} \\
\Rightarrow {f_1} = \dfrac{R}{{2(\mu - 1)}} \\
\Rightarrow {f_1}= \dfrac{R}{{2\left( {\dfrac{3}{2} - 1} \right)}} \\
\Rightarrow {f_1}= R \\ $
When the space between the lens and mirror is filled by water of refractive index ${\mu _1} = \dfrac{4}{3}$ , then the focal length of liquid concave lens ${f_2}$ is
$\dfrac{1}{{{f_2}}} = ({\mu _1} - 1)\left( { - \dfrac{1}{R} - \infty } \right) \\
\Rightarrow {f_2} = \dfrac{{ - R}}{{{\mu _1} - 1}} \\
\Rightarrow {f_2}= - \dfrac{R}{{\left( {\dfrac{4}{3} - 1} \right)}} \\
\Rightarrow {f_2}= - 3R \\ $
The combined focal length of lenses is ${F_1} = 15cm$
$\therefore \dfrac{1}{{{F_1}}} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}}$
Which is given by, if two lenses are considered as equivalent to a single lens of focal length f,
$\dfrac{1}{{15}} = \dfrac{1}{R} - \dfrac{1}{{3R}} \\
\Rightarrow \dfrac{1}{{15}} = \dfrac{{3 - 1}}{{3R}} \\
\Rightarrow 3R = 30 \\
\Rightarrow R = 10cm \\ $
In the second case,
${F_2} = 25\,cm$
Let, ${\mu _1} = {\mu _2}$
Similarly, we will apply same as previous
If two lenses are considered as equivalent to a single lens of focal length f, is given by
$\dfrac{1}{{{F_2}}} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}}$
Now, equating, we will get ${f'_2}$ .
$\dfrac{1}{{25}} = \dfrac{1}{{10}} + \dfrac{1}{{{{f'}_2}}} \\
\Rightarrow \dfrac{1}{{{{f'}_2}}} = \dfrac{1}{{25}} - \dfrac{1}{{10}} \\
\Rightarrow \dfrac{1}{{{{f'}_2}}} = \dfrac{{2 - 5}}{{50}} \\
\Rightarrow {{f'}_2} = \dfrac{{ - 50}}{3}cm \\ $
Now, finally we have to calculate the refractive index of the liquid,
${{f'}_2} = \dfrac{R}{{{\mu _2} - 1}} \\
\Rightarrow {\mu _2} - 1 = - \dfrac{R}{{{{f'}_2}}} \\
\Rightarrow {\mu _2} - 1 = \dfrac{{ - 10}}{{\left( { - \dfrac{{50}}{3}} \right)}} \\ $
Now, cross multiplying,
${\mu _2} - 1 = \dfrac{3}{5} = 0.6 \\
\Rightarrow {\mu _2} = 1 + 0.6 \\
\therefore {\mu _2} = 1.6 \\ $
Hence, the refractive index of the liquid is $1.6$.
Note:Don’t get confused on the refractive indexes, solve all the equations step wise to avoid mistakes. Remember the formula and we know that, generally, a convex lens can converge a beam of parallel rays to a point on the other side of the lens. This point is called a focus of the lens and its distance from the Optical Center of the beam is called the focal length. The radius of curvatures $R_1$ and $R_2$ of the spherical surfaces and the focal length of the lens ‘f’ are connected by an approximate equation.
Formula used:
$\dfrac{1}{f} = (n - 1)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
Where, $n$ is the refractive index, $R_1$ and $R_2$ are the radii of curvature.,$R_1$ is denoted as the surface very near to the light source and $R_2$ is denoted as the surface very far from the light source.
Complete step by step answer:
According to the question, let ${f_1}$ be the focal length of a convex lens; radius of curvature of each curved face is $R$.
$\dfrac{1}{{{f_1}}} = (m - 1)\left( {\dfrac{1}{R} - \left( {\dfrac{1}{{ - R}}} \right)} \right) \\
\Rightarrow \dfrac{1}{{{f_1}}}= (\mu - 1)\dfrac{2}{R} \\
\Rightarrow {f_1} = \dfrac{R}{{2(\mu - 1)}} \\
\Rightarrow {f_1}= \dfrac{R}{{2\left( {\dfrac{3}{2} - 1} \right)}} \\
\Rightarrow {f_1}= R \\ $
When the space between the lens and mirror is filled by water of refractive index ${\mu _1} = \dfrac{4}{3}$ , then the focal length of liquid concave lens ${f_2}$ is
$\dfrac{1}{{{f_2}}} = ({\mu _1} - 1)\left( { - \dfrac{1}{R} - \infty } \right) \\
\Rightarrow {f_2} = \dfrac{{ - R}}{{{\mu _1} - 1}} \\
\Rightarrow {f_2}= - \dfrac{R}{{\left( {\dfrac{4}{3} - 1} \right)}} \\
\Rightarrow {f_2}= - 3R \\ $
The combined focal length of lenses is ${F_1} = 15cm$
$\therefore \dfrac{1}{{{F_1}}} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}}$
Which is given by, if two lenses are considered as equivalent to a single lens of focal length f,
$\dfrac{1}{{15}} = \dfrac{1}{R} - \dfrac{1}{{3R}} \\
\Rightarrow \dfrac{1}{{15}} = \dfrac{{3 - 1}}{{3R}} \\
\Rightarrow 3R = 30 \\
\Rightarrow R = 10cm \\ $
In the second case,
${F_2} = 25\,cm$
Let, ${\mu _1} = {\mu _2}$
Similarly, we will apply same as previous
If two lenses are considered as equivalent to a single lens of focal length f, is given by
$\dfrac{1}{{{F_2}}} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}}$
Now, equating, we will get ${f'_2}$ .
$\dfrac{1}{{25}} = \dfrac{1}{{10}} + \dfrac{1}{{{{f'}_2}}} \\
\Rightarrow \dfrac{1}{{{{f'}_2}}} = \dfrac{1}{{25}} - \dfrac{1}{{10}} \\
\Rightarrow \dfrac{1}{{{{f'}_2}}} = \dfrac{{2 - 5}}{{50}} \\
\Rightarrow {{f'}_2} = \dfrac{{ - 50}}{3}cm \\ $
Now, finally we have to calculate the refractive index of the liquid,
${{f'}_2} = \dfrac{R}{{{\mu _2} - 1}} \\
\Rightarrow {\mu _2} - 1 = - \dfrac{R}{{{{f'}_2}}} \\
\Rightarrow {\mu _2} - 1 = \dfrac{{ - 10}}{{\left( { - \dfrac{{50}}{3}} \right)}} \\ $
Now, cross multiplying,
${\mu _2} - 1 = \dfrac{3}{5} = 0.6 \\
\Rightarrow {\mu _2} = 1 + 0.6 \\
\therefore {\mu _2} = 1.6 \\ $
Hence, the refractive index of the liquid is $1.6$.
Note:Don’t get confused on the refractive indexes, solve all the equations step wise to avoid mistakes. Remember the formula and we know that, generally, a convex lens can converge a beam of parallel rays to a point on the other side of the lens. This point is called a focus of the lens and its distance from the Optical Center of the beam is called the focal length. The radius of curvatures $R_1$ and $R_2$ of the spherical surfaces and the focal length of the lens ‘f’ are connected by an approximate equation.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE