A thin biconvex lens of refractive index $\dfrac{3}{2}$ is placed on a horizontal plane mirror as shown. The space between the lens and the mirror is then filled with water of refractive index $\dfrac{4}{3}$ . It is found that when a point object is placed $15\,cm$ above the lens on its principal axis, the object coincides with its own images. On representing another liquid, the object and the image again coincide at a distance $25cm$ from the lens. Calculate the refractive index of the liquid.
Answer
Verified
385.8k+ views
Hint:Here we will solve this question in two cases in which the first one will be When the space between the lens and mirror is filled by water of refractive index ${\mu _1}$ and in second one where the refractive index will be ${\mu _2}$ . The light retraced its path if it is incident normally on a mirror. The ray after refraction through the lens and the liquid are parallel. We will apply the general thin lens equation with parameters.
Formula used:
$\dfrac{1}{f} = (n - 1)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
Where, $n$ is the refractive index, $R_1$ and $R_2$ are the radii of curvature.,$R_1$ is denoted as the surface very near to the light source and $R_2$ is denoted as the surface very far from the light source.
Complete step by step answer:
According to the question, let ${f_1}$ be the focal length of a convex lens; radius of curvature of each curved face is $R$.
$\dfrac{1}{{{f_1}}} = (m - 1)\left( {\dfrac{1}{R} - \left( {\dfrac{1}{{ - R}}} \right)} \right) \\
\Rightarrow \dfrac{1}{{{f_1}}}= (\mu - 1)\dfrac{2}{R} \\
\Rightarrow {f_1} = \dfrac{R}{{2(\mu - 1)}} \\
\Rightarrow {f_1}= \dfrac{R}{{2\left( {\dfrac{3}{2} - 1} \right)}} \\
\Rightarrow {f_1}= R \\ $
When the space between the lens and mirror is filled by water of refractive index ${\mu _1} = \dfrac{4}{3}$ , then the focal length of liquid concave lens ${f_2}$ is
$\dfrac{1}{{{f_2}}} = ({\mu _1} - 1)\left( { - \dfrac{1}{R} - \infty } \right) \\
\Rightarrow {f_2} = \dfrac{{ - R}}{{{\mu _1} - 1}} \\
\Rightarrow {f_2}= - \dfrac{R}{{\left( {\dfrac{4}{3} - 1} \right)}} \\
\Rightarrow {f_2}= - 3R \\ $
The combined focal length of lenses is ${F_1} = 15cm$
$\therefore \dfrac{1}{{{F_1}}} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}}$
Which is given by, if two lenses are considered as equivalent to a single lens of focal length f,
$\dfrac{1}{{15}} = \dfrac{1}{R} - \dfrac{1}{{3R}} \\
\Rightarrow \dfrac{1}{{15}} = \dfrac{{3 - 1}}{{3R}} \\
\Rightarrow 3R = 30 \\
\Rightarrow R = 10cm \\ $
In the second case,
${F_2} = 25\,cm$
Let, ${\mu _1} = {\mu _2}$
Similarly, we will apply same as previous
If two lenses are considered as equivalent to a single lens of focal length f, is given by
$\dfrac{1}{{{F_2}}} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}}$
Now, equating, we will get ${f'_2}$ .
$\dfrac{1}{{25}} = \dfrac{1}{{10}} + \dfrac{1}{{{{f'}_2}}} \\
\Rightarrow \dfrac{1}{{{{f'}_2}}} = \dfrac{1}{{25}} - \dfrac{1}{{10}} \\
\Rightarrow \dfrac{1}{{{{f'}_2}}} = \dfrac{{2 - 5}}{{50}} \\
\Rightarrow {{f'}_2} = \dfrac{{ - 50}}{3}cm \\ $
Now, finally we have to calculate the refractive index of the liquid,
${{f'}_2} = \dfrac{R}{{{\mu _2} - 1}} \\
\Rightarrow {\mu _2} - 1 = - \dfrac{R}{{{{f'}_2}}} \\
\Rightarrow {\mu _2} - 1 = \dfrac{{ - 10}}{{\left( { - \dfrac{{50}}{3}} \right)}} \\ $
Now, cross multiplying,
${\mu _2} - 1 = \dfrac{3}{5} = 0.6 \\
\Rightarrow {\mu _2} = 1 + 0.6 \\
\therefore {\mu _2} = 1.6 \\ $
Hence, the refractive index of the liquid is $1.6$.
Note:Don’t get confused on the refractive indexes, solve all the equations step wise to avoid mistakes. Remember the formula and we know that, generally, a convex lens can converge a beam of parallel rays to a point on the other side of the lens. This point is called a focus of the lens and its distance from the Optical Center of the beam is called the focal length. The radius of curvatures $R_1$ and $R_2$ of the spherical surfaces and the focal length of the lens ‘f’ are connected by an approximate equation.
Formula used:
$\dfrac{1}{f} = (n - 1)\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$
Where, $n$ is the refractive index, $R_1$ and $R_2$ are the radii of curvature.,$R_1$ is denoted as the surface very near to the light source and $R_2$ is denoted as the surface very far from the light source.
Complete step by step answer:
According to the question, let ${f_1}$ be the focal length of a convex lens; radius of curvature of each curved face is $R$.
$\dfrac{1}{{{f_1}}} = (m - 1)\left( {\dfrac{1}{R} - \left( {\dfrac{1}{{ - R}}} \right)} \right) \\
\Rightarrow \dfrac{1}{{{f_1}}}= (\mu - 1)\dfrac{2}{R} \\
\Rightarrow {f_1} = \dfrac{R}{{2(\mu - 1)}} \\
\Rightarrow {f_1}= \dfrac{R}{{2\left( {\dfrac{3}{2} - 1} \right)}} \\
\Rightarrow {f_1}= R \\ $
When the space between the lens and mirror is filled by water of refractive index ${\mu _1} = \dfrac{4}{3}$ , then the focal length of liquid concave lens ${f_2}$ is
$\dfrac{1}{{{f_2}}} = ({\mu _1} - 1)\left( { - \dfrac{1}{R} - \infty } \right) \\
\Rightarrow {f_2} = \dfrac{{ - R}}{{{\mu _1} - 1}} \\
\Rightarrow {f_2}= - \dfrac{R}{{\left( {\dfrac{4}{3} - 1} \right)}} \\
\Rightarrow {f_2}= - 3R \\ $
The combined focal length of lenses is ${F_1} = 15cm$
$\therefore \dfrac{1}{{{F_1}}} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}}$
Which is given by, if two lenses are considered as equivalent to a single lens of focal length f,
$\dfrac{1}{{15}} = \dfrac{1}{R} - \dfrac{1}{{3R}} \\
\Rightarrow \dfrac{1}{{15}} = \dfrac{{3 - 1}}{{3R}} \\
\Rightarrow 3R = 30 \\
\Rightarrow R = 10cm \\ $
In the second case,
${F_2} = 25\,cm$
Let, ${\mu _1} = {\mu _2}$
Similarly, we will apply same as previous
If two lenses are considered as equivalent to a single lens of focal length f, is given by
$\dfrac{1}{{{F_2}}} = \dfrac{1}{{{f_1}}} + \dfrac{1}{{{f_2}}}$
Now, equating, we will get ${f'_2}$ .
$\dfrac{1}{{25}} = \dfrac{1}{{10}} + \dfrac{1}{{{{f'}_2}}} \\
\Rightarrow \dfrac{1}{{{{f'}_2}}} = \dfrac{1}{{25}} - \dfrac{1}{{10}} \\
\Rightarrow \dfrac{1}{{{{f'}_2}}} = \dfrac{{2 - 5}}{{50}} \\
\Rightarrow {{f'}_2} = \dfrac{{ - 50}}{3}cm \\ $
Now, finally we have to calculate the refractive index of the liquid,
${{f'}_2} = \dfrac{R}{{{\mu _2} - 1}} \\
\Rightarrow {\mu _2} - 1 = - \dfrac{R}{{{{f'}_2}}} \\
\Rightarrow {\mu _2} - 1 = \dfrac{{ - 10}}{{\left( { - \dfrac{{50}}{3}} \right)}} \\ $
Now, cross multiplying,
${\mu _2} - 1 = \dfrac{3}{5} = 0.6 \\
\Rightarrow {\mu _2} = 1 + 0.6 \\
\therefore {\mu _2} = 1.6 \\ $
Hence, the refractive index of the liquid is $1.6$.
Note:Don’t get confused on the refractive indexes, solve all the equations step wise to avoid mistakes. Remember the formula and we know that, generally, a convex lens can converge a beam of parallel rays to a point on the other side of the lens. This point is called a focus of the lens and its distance from the Optical Center of the beam is called the focal length. The radius of curvatures $R_1$ and $R_2$ of the spherical surfaces and the focal length of the lens ‘f’ are connected by an approximate equation.
Recently Updated Pages
Using the following information to help you answer class 12 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
In case of conflict between fundamental rights of citizens class 7 social science CBSE
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
Complete the letter given below written to your Principal class null english null
Trending doubts
Show variation of resistivity of copper as a function class 12 physics CBSE
Electrolysis of dilute H2SO4 generates H2S2O8 What class 12 chemistry CBSE
Explain with a neat labelled diagram the TS of mammalian class 12 biology CBSE
How do you convert from joules to electron volts class 12 physics CBSE
A convex lens is placed in water Its focal length A class 12 physics CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE