Answer
Verified
473.1k+ views
Hint: At first, we will consider the diagram given below. Then by using Pythagoras theorem we can find the solution of the given problem.
Complete step-by-step answer:
It is given that the height of the tower is \[51\]m. It has a mark at a height of \[25\]m from the ground. We have to find the distance where the two parts subtend equal angles to an eye at the height of \[5\]m, from the ground.
Let us consider the diagram where,\[AC = 51\], \[B\] is the marked point such that, \[AB = 25\]. Again, \[PQ = AD = 5\]
It is given that,
\[\angle CQB = \angle AQB\].
Therefore \[QB\] is bisector of angle \[\angle AQC\] and as such it divides the base \[AC\] in the ratio of the arm of the angle
\[\dfrac{{AB}}{{BC}} = \dfrac{{QA}}{{QC}}\]
We are going to use Pythagoras theorem for following triangles,
From \[\Delta QDA\] we have, \[\sqrt {Q{D^2} + A{D^2}} = QA\]
From \[\Delta QDC\] we have, \[\sqrt {Q{D^2} + D{C^2}} = QC\]
Let us substitute these values of the sides in the above equation we get,
\[\dfrac{{AB}}{{BC}} = \dfrac{{\sqrt {Q{D^2} + D{A^2}} }}{{\sqrt {Q{D^2} + D{C^2}} }}\]
Let us consider, \[PA = QD = x\]
Let substitute these known as values we get,
\[\dfrac{{25}}{{26}} = \dfrac{{\sqrt {{x^2} + {5^2}} }}{{\sqrt {{x^2} + {{46}^2}} }}\]
On squaring both sides and cross multiplying we get,
\[625({x^2} + {46^2}) = 676({x^2} + 25)\]
Om simplifying the above equation, we get,
\[51{x^2} = (625 \times {46^2} - 676 \times 25)\]
Simplifying again we get,
\[{x^2} = 25600\]
Taking square root on both sides of the above equation we get,
\[x = 160\]
Hence, the required distance is \[160\]m.
Note: Pythagoras theorem states that, for a right-angle triangle, the square of the hypotenuse is equal to the sum of the square of base and the square of perpendicular.
To find the value of x diagram plays a major role, it will help us by leading it to find the triangle to which the Pythagoras theorem is applied.
Complete step-by-step answer:
It is given that the height of the tower is \[51\]m. It has a mark at a height of \[25\]m from the ground. We have to find the distance where the two parts subtend equal angles to an eye at the height of \[5\]m, from the ground.
Let us consider the diagram where,\[AC = 51\], \[B\] is the marked point such that, \[AB = 25\]. Again, \[PQ = AD = 5\]
It is given that,
\[\angle CQB = \angle AQB\].
Therefore \[QB\] is bisector of angle \[\angle AQC\] and as such it divides the base \[AC\] in the ratio of the arm of the angle
\[\dfrac{{AB}}{{BC}} = \dfrac{{QA}}{{QC}}\]
We are going to use Pythagoras theorem for following triangles,
From \[\Delta QDA\] we have, \[\sqrt {Q{D^2} + A{D^2}} = QA\]
From \[\Delta QDC\] we have, \[\sqrt {Q{D^2} + D{C^2}} = QC\]
Let us substitute these values of the sides in the above equation we get,
\[\dfrac{{AB}}{{BC}} = \dfrac{{\sqrt {Q{D^2} + D{A^2}} }}{{\sqrt {Q{D^2} + D{C^2}} }}\]
Let us consider, \[PA = QD = x\]
Let substitute these known as values we get,
\[\dfrac{{25}}{{26}} = \dfrac{{\sqrt {{x^2} + {5^2}} }}{{\sqrt {{x^2} + {{46}^2}} }}\]
On squaring both sides and cross multiplying we get,
\[625({x^2} + {46^2}) = 676({x^2} + 25)\]
Om simplifying the above equation, we get,
\[51{x^2} = (625 \times {46^2} - 676 \times 25)\]
Simplifying again we get,
\[{x^2} = 25600\]
Taking square root on both sides of the above equation we get,
\[x = 160\]
Hence, the required distance is \[160\]m.
Note: Pythagoras theorem states that, for a right-angle triangle, the square of the hypotenuse is equal to the sum of the square of base and the square of perpendicular.
To find the value of x diagram plays a major role, it will help us by leading it to find the triangle to which the Pythagoras theorem is applied.
Recently Updated Pages
In the following figure the value of resistor to be class 10 physics CBSE
What is the maximum resistance which can be made using class 10 physics CBSE
The magnetic induction at point P which is at a distance class 10 physics CBSE
According to Mendeleevs Periodic Law the elements were class 10 chemistry CBSE
Arrange the following elements in the order of their class 10 chemistry CBSE
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Trending doubts
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE