Answer
Verified
497.1k+ views
Hint- Here, we will be making diagram according to the problem statement and then we will use the formula for tangent trigonometric function i.e, $\tan \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}}$ in order to evaluate the value for the angle of elevation (i.e., $\theta $).
Complete step-by-step answer:
Given, height of the tower AB = $5\sqrt 3 $ meter
Let point C be a point which is 5 meter away from the foot of the tower AB (i.e., point B).
Let us suppose that the angle of elevation of the top of the tower (i.e., point A) from point C is $\theta $.
As we know that in any right angled triangle, $\tan \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}}{\text{ }} \to {\text{(1)}}$
In the right angled triangle ABC (right angled at vertex B), side AB is the perpendicular, side BC is the base and side AC is the hypotenuse.
Using formula given by equation (1) for triangle ABC, we get
$
\tan \theta = \dfrac{{{\text{AB}}}}{{{\text{BC}}}} = \dfrac{{5\sqrt 3 }}{5} \\
\Rightarrow \tan \theta = \sqrt 3 {\text{ }} \to {\text{(2)}} \\
$
Also we know that $\tan {60^0} = \sqrt 3 {\text{ }} \to {\text{(3)}}$
Clearly, the RHS of both the equations (2) and (3) is the same so the LHS of both these equations will also be equal.
i.e., $
\tan \theta = \tan {60^0} \\
\Rightarrow \theta = {60^0} \\
$
Therefore, the required angle of elevation of the top of the tower from a point 5 meter away from the foot of the tower is ${60^0}$.
Note- In any right angled triangle, the hypotenuse is the side opposite to ${90^0}$ (in this case the right angle is at B and the side opposite to vertex B is AC), the perpendicular is the side opposite to the considered angle $\theta $ (in this case the perpendicular is AB) and the base is the remaining side (in this case base is BC).
Complete step-by-step answer:
Given, height of the tower AB = $5\sqrt 3 $ meter
Let point C be a point which is 5 meter away from the foot of the tower AB (i.e., point B).
Let us suppose that the angle of elevation of the top of the tower (i.e., point A) from point C is $\theta $.
As we know that in any right angled triangle, $\tan \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}}{\text{ }} \to {\text{(1)}}$
In the right angled triangle ABC (right angled at vertex B), side AB is the perpendicular, side BC is the base and side AC is the hypotenuse.
Using formula given by equation (1) for triangle ABC, we get
$
\tan \theta = \dfrac{{{\text{AB}}}}{{{\text{BC}}}} = \dfrac{{5\sqrt 3 }}{5} \\
\Rightarrow \tan \theta = \sqrt 3 {\text{ }} \to {\text{(2)}} \\
$
Also we know that $\tan {60^0} = \sqrt 3 {\text{ }} \to {\text{(3)}}$
Clearly, the RHS of both the equations (2) and (3) is the same so the LHS of both these equations will also be equal.
i.e., $
\tan \theta = \tan {60^0} \\
\Rightarrow \theta = {60^0} \\
$
Therefore, the required angle of elevation of the top of the tower from a point 5 meter away from the foot of the tower is ${60^0}$.
Note- In any right angled triangle, the hypotenuse is the side opposite to ${90^0}$ (in this case the right angle is at B and the side opposite to vertex B is AC), the perpendicular is the side opposite to the considered angle $\theta $ (in this case the perpendicular is AB) and the base is the remaining side (in this case base is BC).
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE