Answer
Verified
500.4k+ views
Hint- Here, we will be using the tangent of the angle of elevation in order to find the height of the tower.
Let AB is the tower of height $h$ meters and C be any point on the ground which is 20 m away from the foot of the tower and the angle of elevation of the top of the tower from point C is ${60^0}$.
Clearly, $\vartriangle {\text{ABC}}$ is a right angled triangle at vertex B.
As we know that in any right angled triangle, $\tan \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}}$
From the figure we can say that according to angle ${60^0}$, AB is the perpendicular, BC is the base and
AC is the hypotenuse of the right angled triangle ABC.
So, $\tan {60^0} = \dfrac{{{\text{AB}}}}{{{\text{BC}}}} = \dfrac{h}{{20}} \Rightarrow h = 20\left( {\tan {{60}^0}} \right){\text{ }} \to {\text{(1)}}$
Also we know that $\tan {60^0} = \sqrt 3 $
Equation (1) becomes $ \Rightarrow h = 20\left( {\tan {{60}^0}} \right) = 20\sqrt 3 {\text{ m}}$
Hence, the height of the tower AB is $20\sqrt 3 $ meters.
Note- In these type of problems we need to know that for any right angled triangle, the side opposite to
the right angle is the hypotenuse, the side opposite to the acute angle considered (in the above problem
the acute angle considered is ${60^0}$) is the perpendicular and the remaining side is the base.
Let AB is the tower of height $h$ meters and C be any point on the ground which is 20 m away from the foot of the tower and the angle of elevation of the top of the tower from point C is ${60^0}$.
Clearly, $\vartriangle {\text{ABC}}$ is a right angled triangle at vertex B.
As we know that in any right angled triangle, $\tan \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}}$
From the figure we can say that according to angle ${60^0}$, AB is the perpendicular, BC is the base and
AC is the hypotenuse of the right angled triangle ABC.
So, $\tan {60^0} = \dfrac{{{\text{AB}}}}{{{\text{BC}}}} = \dfrac{h}{{20}} \Rightarrow h = 20\left( {\tan {{60}^0}} \right){\text{ }} \to {\text{(1)}}$
Also we know that $\tan {60^0} = \sqrt 3 $
Equation (1) becomes $ \Rightarrow h = 20\left( {\tan {{60}^0}} \right) = 20\sqrt 3 {\text{ m}}$
Hence, the height of the tower AB is $20\sqrt 3 $ meters.
Note- In these type of problems we need to know that for any right angled triangle, the side opposite to
the right angle is the hypotenuse, the side opposite to the acute angle considered (in the above problem
the acute angle considered is ${60^0}$) is the perpendicular and the remaining side is the base.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE