Answer
Verified
459.9k+ views
Hint: The law of conservation of momentum shows that the initial momentum is equal to final momentum of the system. Find out the initial momentum of the system and final momentum of the system and equate them to find the final velocity of the trolley. Distance covered by trolley is the product of velocity and time taken.
Complete step by step answer:
The mass of the system is \[200\,{\rm{kg}}\]; the initial speed of system is \[36\,{{{\rm{km}}} {\left/
{\vphantom {{{\rm{km}}} {\rm{h}}}} \right.
} {\rm{h}}}\]. The mass of child is \[20\,{\rm{kg}}\], the distance covered by the child is \[10\,{\rm{m}}\] and the speed of child relative to trolley is\[10\,{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}\].
The formula to calculate the initial momentum of the system is
\[{p_i} = m{v_i}\]
Where, \[{p_i}\] is the initial momentum, \[m\] is the total mass of the system and \[{v_i}\] is the initial velocity of the system.
Substitute \[200\,{\rm{kg}}\] for \[m\] and \[36\,{{{\rm{km}}} {\left/
{\vphantom {{{\rm{km}}} {\rm{h}}}} \right.
} {\rm{h}}}\] for \[{v_i}\] in the formula to calculate the initial momentum of the system.
$ {p_i} = \left( {200\,{\rm{kg}}} \right)\left( {36\,{{{\rm{km}}} {\left/
{\vphantom {{{\rm{km}}} {\rm{h}}}} \right.
} {\rm{h}}}} \right)\left( {\dfrac{{\dfrac{5}{{18}}\,{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}}}{{1\,{{{\rm{km}}} {\left/
{\vphantom {{{\rm{km}}} {\rm{h}}}} \right.
} {\rm{h}}}}}} \right)\\$
$\implies {p_i} = \left( {200\,{\rm{kg}}} \right)\left( {10\,{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}} \right)\\$
$\implies {p_i} = 2000\,{\rm{kg}} \cdot {{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}} $
The total mass of the system is \[200\,{\rm{kg}}\] and the mass of the child is \[20\,{\rm{kg}}\] so the formula to calculate the mass of the trolley is
\[{m_t} = m - {m_c}\]
Where, \[{m_t}\] is the mass of the trolley and \[{m_c}\] is the mass of the child.
Substitute \[200\,{\rm{kg}}\] for \[m\] and \[20\,{\rm{kg}}\] for \[{m_c}\] in the formula to calculate the mass of trolley.
\[\begin{array}{c}
{m_t} = 200\,{\rm{kg}} - 20\,{\rm{kg}}\\
{\rm{ = 180}}\,{\rm{kg}}
\end{array}\]
The speed of child relative to trolley is \[10\,{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}\] and the speed of the trolley relative to ground is \[10\,{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}\], therefore the speed of child relative to ground is \[10\,{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}} + 10\,{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}} = 20\,{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}\].
The formula to calculate the final momentum of the system is
\[{p_f} = {m_t}{v_t} + {m_c}{v_c}\]
Where, \[{p_f}\]is the final momentum, \[{v_t}\] is the final speed of the trolley and \[{v_c}\] is the final speed of the child.
Substitute \[180\,{\rm{kg}}\] for\[{m_t}\], \[20\,{\rm{kg}}\] for \[{m_c}\] and \[20\,{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}\]for \[{v_c}\] in the formula to obtain an equation for final momentum of the system.
\[\begin{array}{c}
{p_f} = \left( {180\,{\rm{kg}}} \right)\left( {{v_t}} \right) + \left( {20\,{\rm{kg}}} \right)\left( {20\,{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}} \right)\\
= \left( {180\,{\rm{kg}}} \right)\left( {{v_t}} \right) + 400\,{\rm{kg}} \cdot {{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}
\end{array}\]
According to the law of conservation of linear momentum, the initial momentum is equal to the final momentum of the system.
The formula of conservation of the linear momentum is
\[{p_i} = {p_f}\].
Substitute \[2000\,{\rm{kg}} \cdot {{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}\] for \[{p_i}\] and \[\left( {180\,{\rm{kg}}} \right)\left( {{v_i}} \right) + 400\,{\rm{kg}} \cdot {{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}\] for \[{p_f}\] in the formula and solve for the final velocity of the trolley.
$ 2000\,{\rm{kg}} \cdot {{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}} = \left( {180\,{\rm{kg}}} \right)\left( {{v_t}} \right) + 400\,{\rm{kg}} \cdot {{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}\\
\left( {180\,{\rm{kg}}} \right)\left( {{v_t}} \right) = 2000\,{\rm{kg}} \cdot {{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}} - 400\,{\rm{kg}} \cdot {{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}\\
{v_t} = \dfrac{{1600\,{\rm{kg}} \cdot {{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}}}{{180\,{\rm{kg}}}}\\
\approx 9\,{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}} $
Thus, the final speed of the trolley is \[9\,{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}\] which means option (a) is correct.
Therefore, the formula to calculate the distance covered by the trolley is
\[d = {v_t}t\]
Where, \[d\] is the distance covered and \[t\] is the time taken.
Substitute \[9\,{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}\] for \[d\] and \[1\,{\rm{s}}\] for \[t\] in the formula to calculate the distance covered.
$ d = \left( {9\,{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}} \right)\left( {1\,{\rm{s}}} \right)\\$
$ d= 9\,{\rm{m}}$
So, the correct answer is “Option C”.
Note:
The initial momentum of the system includes both trolley and child and the final momentum of the system includes different velocity of both trolley and child. The child covers \[10\,{\rm{m}}\] distance in \[1\,{\rm{s}}\] therefore the time should be \[1\,{\rm{s}}\].
Complete step by step answer:
The mass of the system is \[200\,{\rm{kg}}\]; the initial speed of system is \[36\,{{{\rm{km}}} {\left/
{\vphantom {{{\rm{km}}} {\rm{h}}}} \right.
} {\rm{h}}}\]. The mass of child is \[20\,{\rm{kg}}\], the distance covered by the child is \[10\,{\rm{m}}\] and the speed of child relative to trolley is\[10\,{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}\].
The formula to calculate the initial momentum of the system is
\[{p_i} = m{v_i}\]
Where, \[{p_i}\] is the initial momentum, \[m\] is the total mass of the system and \[{v_i}\] is the initial velocity of the system.
Substitute \[200\,{\rm{kg}}\] for \[m\] and \[36\,{{{\rm{km}}} {\left/
{\vphantom {{{\rm{km}}} {\rm{h}}}} \right.
} {\rm{h}}}\] for \[{v_i}\] in the formula to calculate the initial momentum of the system.
$ {p_i} = \left( {200\,{\rm{kg}}} \right)\left( {36\,{{{\rm{km}}} {\left/
{\vphantom {{{\rm{km}}} {\rm{h}}}} \right.
} {\rm{h}}}} \right)\left( {\dfrac{{\dfrac{5}{{18}}\,{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}}}{{1\,{{{\rm{km}}} {\left/
{\vphantom {{{\rm{km}}} {\rm{h}}}} \right.
} {\rm{h}}}}}} \right)\\$
$\implies {p_i} = \left( {200\,{\rm{kg}}} \right)\left( {10\,{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}} \right)\\$
$\implies {p_i} = 2000\,{\rm{kg}} \cdot {{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}} $
The total mass of the system is \[200\,{\rm{kg}}\] and the mass of the child is \[20\,{\rm{kg}}\] so the formula to calculate the mass of the trolley is
\[{m_t} = m - {m_c}\]
Where, \[{m_t}\] is the mass of the trolley and \[{m_c}\] is the mass of the child.
Substitute \[200\,{\rm{kg}}\] for \[m\] and \[20\,{\rm{kg}}\] for \[{m_c}\] in the formula to calculate the mass of trolley.
\[\begin{array}{c}
{m_t} = 200\,{\rm{kg}} - 20\,{\rm{kg}}\\
{\rm{ = 180}}\,{\rm{kg}}
\end{array}\]
The speed of child relative to trolley is \[10\,{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}\] and the speed of the trolley relative to ground is \[10\,{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}\], therefore the speed of child relative to ground is \[10\,{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}} + 10\,{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}} = 20\,{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}\].
The formula to calculate the final momentum of the system is
\[{p_f} = {m_t}{v_t} + {m_c}{v_c}\]
Where, \[{p_f}\]is the final momentum, \[{v_t}\] is the final speed of the trolley and \[{v_c}\] is the final speed of the child.
Substitute \[180\,{\rm{kg}}\] for\[{m_t}\], \[20\,{\rm{kg}}\] for \[{m_c}\] and \[20\,{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}\]for \[{v_c}\] in the formula to obtain an equation for final momentum of the system.
\[\begin{array}{c}
{p_f} = \left( {180\,{\rm{kg}}} \right)\left( {{v_t}} \right) + \left( {20\,{\rm{kg}}} \right)\left( {20\,{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}} \right)\\
= \left( {180\,{\rm{kg}}} \right)\left( {{v_t}} \right) + 400\,{\rm{kg}} \cdot {{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}
\end{array}\]
According to the law of conservation of linear momentum, the initial momentum is equal to the final momentum of the system.
The formula of conservation of the linear momentum is
\[{p_i} = {p_f}\].
Substitute \[2000\,{\rm{kg}} \cdot {{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}\] for \[{p_i}\] and \[\left( {180\,{\rm{kg}}} \right)\left( {{v_i}} \right) + 400\,{\rm{kg}} \cdot {{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}\] for \[{p_f}\] in the formula and solve for the final velocity of the trolley.
$ 2000\,{\rm{kg}} \cdot {{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}} = \left( {180\,{\rm{kg}}} \right)\left( {{v_t}} \right) + 400\,{\rm{kg}} \cdot {{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}\\
\left( {180\,{\rm{kg}}} \right)\left( {{v_t}} \right) = 2000\,{\rm{kg}} \cdot {{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}} - 400\,{\rm{kg}} \cdot {{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}\\
{v_t} = \dfrac{{1600\,{\rm{kg}} \cdot {{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}}}{{180\,{\rm{kg}}}}\\
\approx 9\,{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}} $
Thus, the final speed of the trolley is \[9\,{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}\] which means option (a) is correct.
Therefore, the formula to calculate the distance covered by the trolley is
\[d = {v_t}t\]
Where, \[d\] is the distance covered and \[t\] is the time taken.
Substitute \[9\,{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}\] for \[d\] and \[1\,{\rm{s}}\] for \[t\] in the formula to calculate the distance covered.
$ d = \left( {9\,{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {\rm{s}}}} \right.
} {\rm{s}}}} \right)\left( {1\,{\rm{s}}} \right)\\$
$ d= 9\,{\rm{m}}$
So, the correct answer is “Option C”.
Note:
The initial momentum of the system includes both trolley and child and the final momentum of the system includes different velocity of both trolley and child. The child covers \[10\,{\rm{m}}\] distance in \[1\,{\rm{s}}\] therefore the time should be \[1\,{\rm{s}}\].
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE