Answer
Verified
451.2k+ views
Hint:Here to determine the deformation of the cone we have to derive an expression for the deformation in a small elemental area of the truncated cone based on the relation of Young’s modulus of a body. Then integrating that expression for the full height of the cone will provide us with the deformation of the entire cone.
Formulas used:
-Young’s modulus of a body is given by, $Y = \dfrac{{Fl}}{{A\Delta l}}$ where $F$ is the applied force, $A$ is the area of the body $l$ is the length of the body and $\Delta l$ is the change in length of the body.
Complete step by step answer.
Step 1: Sketch the truncated cone and consider an elemental area in it.
In the above figure, we consider a small elemental area of length ${\text{dx}}$ from the top of the cone. As seen in the above figure an angle $\theta $ is made at the top right corner of the cone.
Then we have $\tan \theta = \dfrac{{{r_2} - {r_1}}}{h}$ .
Also, the radius of the small element at $x$ distance can be expressed as $R = {r_1} + x\tan \theta $.
Then the area of the element will be $A = \pi {R^2} = \pi {\left( {{r_1} + x\tan \theta } \right)^2}$
Step 2: Express the relation for Young’s modulus for the small elemental area to obtain the required expression for the deformation ${\text{dl}}$ in the small element.
Young’s modulus of the small element can be expressed as $Y = \dfrac{{Fdx}}{{Adl}}$ ; ${\text{dl}}$ is the deformation of the small element of length ${\text{dx}}$.
$ \Rightarrow dl = \dfrac{{Fdx}}{{AY}}$ --------(1)
Substituting for $A = \pi {\left( {{r_1} + x\tan \theta } \right)^2}$ in equation (1) we get, $dl = \dfrac{{Fdx}}{{\pi {{\left( {{r_1} + x\tan \theta } \right)}^2}Y}}$ -------(2)
Step 3: Integrate equation (2) to obtain the deformation for the whole height of the cone.
The integral of equation (3) is expressed as $\Delta l = \int\limits_0^H {dl} = \int\limits_0^H {\dfrac{{Fdx}}{{\pi {{\left( {{r_1} + x\tan \theta } \right)}^2}Y}}} $
On integrating we have, $\Delta l = \dfrac{F}{{\pi Y}}\int\limits_0^H {\dfrac{{dx}}{{{{\left( {{r_1} + x\tan \theta } \right)}^2}}} = } \dfrac{F}{{\pi Y}}\left[ {\dfrac{1}{{{r_1} + x\tan \theta }} \times \dfrac{1}{{\tan \theta }}} \right]_0^H$
Substituting for $\tan \theta = \dfrac{{{r_2} - {r_1}}}{h}$ in the above expression we get,$\Delta l = \dfrac{F}{{\pi Y}}\left[ {\dfrac{H}{{H{r_1} + x\left( {{r_2} - {r_1}} \right)}} \times \dfrac{H}{{\left( {{r_2} - {r_1}} \right)}}} \right]_0^H$
Now applying the limits will give us $\Delta l = \dfrac{F}{{\pi Y}} \times \dfrac{H}{{{r_2} - {r_1}}}\left[ {\dfrac{1}{{{r_2}}} - \dfrac{1}{{{r_1}}}} \right]$
On simplifying we get, $\Delta l = \dfrac{{FH}}{{\pi {r_1}{r_2}Y}}$ .
Thus the deformation of the cone is $\Delta l = \dfrac{{FH}}{{\pi {r_1}{r_2}Y}}$ .
So the correct option is D.
Note:To avoid confusion while integrating equation (3) it is better if all the constant terms are taken outside the integral. In the integral $\int {\dfrac{{dx}}{{{{\left( {{r_1} + x\tan \theta } \right)}^2}}}} $, ${r_1}$ is a constant and so is $\tan \theta $ and so this integral is obtained using the formula$\int {\dfrac{{dx}}{{{{\left( {a + x\tan \theta } \right)}^2}}} = \dfrac{1}{{a + x\tan \theta }}} \times \dfrac{1}{{\tan \theta }}$ .
Formulas used:
-Young’s modulus of a body is given by, $Y = \dfrac{{Fl}}{{A\Delta l}}$ where $F$ is the applied force, $A$ is the area of the body $l$ is the length of the body and $\Delta l$ is the change in length of the body.
Complete step by step answer.
Step 1: Sketch the truncated cone and consider an elemental area in it.
In the above figure, we consider a small elemental area of length ${\text{dx}}$ from the top of the cone. As seen in the above figure an angle $\theta $ is made at the top right corner of the cone.
Then we have $\tan \theta = \dfrac{{{r_2} - {r_1}}}{h}$ .
Also, the radius of the small element at $x$ distance can be expressed as $R = {r_1} + x\tan \theta $.
Then the area of the element will be $A = \pi {R^2} = \pi {\left( {{r_1} + x\tan \theta } \right)^2}$
Step 2: Express the relation for Young’s modulus for the small elemental area to obtain the required expression for the deformation ${\text{dl}}$ in the small element.
Young’s modulus of the small element can be expressed as $Y = \dfrac{{Fdx}}{{Adl}}$ ; ${\text{dl}}$ is the deformation of the small element of length ${\text{dx}}$.
$ \Rightarrow dl = \dfrac{{Fdx}}{{AY}}$ --------(1)
Substituting for $A = \pi {\left( {{r_1} + x\tan \theta } \right)^2}$ in equation (1) we get, $dl = \dfrac{{Fdx}}{{\pi {{\left( {{r_1} + x\tan \theta } \right)}^2}Y}}$ -------(2)
Step 3: Integrate equation (2) to obtain the deformation for the whole height of the cone.
The integral of equation (3) is expressed as $\Delta l = \int\limits_0^H {dl} = \int\limits_0^H {\dfrac{{Fdx}}{{\pi {{\left( {{r_1} + x\tan \theta } \right)}^2}Y}}} $
On integrating we have, $\Delta l = \dfrac{F}{{\pi Y}}\int\limits_0^H {\dfrac{{dx}}{{{{\left( {{r_1} + x\tan \theta } \right)}^2}}} = } \dfrac{F}{{\pi Y}}\left[ {\dfrac{1}{{{r_1} + x\tan \theta }} \times \dfrac{1}{{\tan \theta }}} \right]_0^H$
Substituting for $\tan \theta = \dfrac{{{r_2} - {r_1}}}{h}$ in the above expression we get,$\Delta l = \dfrac{F}{{\pi Y}}\left[ {\dfrac{H}{{H{r_1} + x\left( {{r_2} - {r_1}} \right)}} \times \dfrac{H}{{\left( {{r_2} - {r_1}} \right)}}} \right]_0^H$
Now applying the limits will give us $\Delta l = \dfrac{F}{{\pi Y}} \times \dfrac{H}{{{r_2} - {r_1}}}\left[ {\dfrac{1}{{{r_2}}} - \dfrac{1}{{{r_1}}}} \right]$
On simplifying we get, $\Delta l = \dfrac{{FH}}{{\pi {r_1}{r_2}Y}}$ .
Thus the deformation of the cone is $\Delta l = \dfrac{{FH}}{{\pi {r_1}{r_2}Y}}$ .
So the correct option is D.
Note:To avoid confusion while integrating equation (3) it is better if all the constant terms are taken outside the integral. In the integral $\int {\dfrac{{dx}}{{{{\left( {{r_1} + x\tan \theta } \right)}^2}}}} $, ${r_1}$ is a constant and so is $\tan \theta $ and so this integral is obtained using the formula$\int {\dfrac{{dx}}{{{{\left( {a + x\tan \theta } \right)}^2}}} = \dfrac{1}{{a + x\tan \theta }}} \times \dfrac{1}{{\tan \theta }}$ .
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE