Answer
Verified
472.5k+ views
Hint:Assume investment on one of the bonds as a variable. Then you automatically get the investment on the second bond. After that form two matrices one for investments and one for interests per year. At last, get the annual interest and equate it to the value given in the question.
Complete step-by-step answer:
Let the investment on first bond be Rs $x$
Total investment$ = $Rs$30,000$
Investment on second bond$ = $Rs$\left( {30,000 - x} \right)$
Now let us represent investment per bond by the matrix $A$
$A = \left[ {\begin{array}{*{20}{c}}
x \\
{30000 - x}
\end{array}} \right]$
$A$ is a $2 \times 1$ matrix which means it has $2$ rows and $1$ columns.
Now we will represent interest per year by a matrix.
Interest paid by the first bond$ = 5\% $
Interest paid by the second bond$ = 7\% $.
$B = \left[ {\begin{array}{*{20}{c}}
{5\% }&{7\% }
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\dfrac{5}{{100}}}&{\dfrac{7}{{100}}}
\end{array}} \right]$
$B$ is the $1 \times 2$ matrix which means it has $1$ row and 2 columns.
Now the question arises why we took $B$ as the $1 \times 2$ matrix and not $2 \times 1$ like $A$
This answer is to the fact that matrix multiplication takes place only when the number of columns of the first matrix is equal to the number of rows of the second matrix.
As it is said that we have to solve it by matrix multiplication, therefore it is necessary to take the order of matrices $A$ and $B$ in such a way that matrix multiplication is possible.
Now total annual interest$ = $ interest per bond $ \times $ investment per bond
$1800 = {\left[ {\begin{array}{*{20}{c}}
{\dfrac{5}{{100}}}&{\dfrac{7}{{100}}}
\end{array}} \right]_{1 \times 2}} \times {\left[ {\begin{array}{*{20}{c}}
x \\
{30000 - x}
\end{array}} \right]_{2 \times 1}}$
$ = {\left[ {\dfrac{{5x}}{{100}} + \dfrac{7}{{100}}\left( {30000 - x} \right)} \right]_{1 \times 1}}$
$ = \dfrac{{5x + 21000 - 7x}}{{100}}$
$180000 = 210000 - 2x$
$2x = 30000$
$x = 15000$
Hence amount invested at $5\% = $ Rs$15000$
Amount invested at $7\% =$Rs$\left( {30,000 - x} \right)$= $ Rs$15000
Note:The most important part about this question is to choose the order of the matrix for matrix multiplication. Students choose the wrong order of the matrix and are not able to multiply the matrices or multiply them in the wrong way.
Also it should be known to you that:
Total annual interest $ = $ Interest $ \times $ investment.
Complete step-by-step answer:
Let the investment on first bond be Rs $x$
Total investment$ = $Rs$30,000$
Investment on second bond$ = $Rs$\left( {30,000 - x} \right)$
Now let us represent investment per bond by the matrix $A$
$A = \left[ {\begin{array}{*{20}{c}}
x \\
{30000 - x}
\end{array}} \right]$
$A$ is a $2 \times 1$ matrix which means it has $2$ rows and $1$ columns.
Now we will represent interest per year by a matrix.
Interest paid by the first bond$ = 5\% $
Interest paid by the second bond$ = 7\% $.
$B = \left[ {\begin{array}{*{20}{c}}
{5\% }&{7\% }
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\dfrac{5}{{100}}}&{\dfrac{7}{{100}}}
\end{array}} \right]$
$B$ is the $1 \times 2$ matrix which means it has $1$ row and 2 columns.
Now the question arises why we took $B$ as the $1 \times 2$ matrix and not $2 \times 1$ like $A$
This answer is to the fact that matrix multiplication takes place only when the number of columns of the first matrix is equal to the number of rows of the second matrix.
As it is said that we have to solve it by matrix multiplication, therefore it is necessary to take the order of matrices $A$ and $B$ in such a way that matrix multiplication is possible.
Now total annual interest$ = $ interest per bond $ \times $ investment per bond
$1800 = {\left[ {\begin{array}{*{20}{c}}
{\dfrac{5}{{100}}}&{\dfrac{7}{{100}}}
\end{array}} \right]_{1 \times 2}} \times {\left[ {\begin{array}{*{20}{c}}
x \\
{30000 - x}
\end{array}} \right]_{2 \times 1}}$
$ = {\left[ {\dfrac{{5x}}{{100}} + \dfrac{7}{{100}}\left( {30000 - x} \right)} \right]_{1 \times 1}}$
$ = \dfrac{{5x + 21000 - 7x}}{{100}}$
$180000 = 210000 - 2x$
$2x = 30000$
$x = 15000$
Hence amount invested at $5\% = $ Rs$15000$
Amount invested at $7\% =$Rs$\left( {30,000 - x} \right)$= $ Rs$15000
Note:The most important part about this question is to choose the order of the matrix for matrix multiplication. Students choose the wrong order of the matrix and are not able to multiply the matrices or multiply them in the wrong way.
Also it should be known to you that:
Total annual interest $ = $ Interest $ \times $ investment.
Recently Updated Pages
Arrange the following elements in the order of their class 10 chemistry CBSE
In the following figure the value of resistor to be class 10 physics CBSE
What is the maximum resistance which can be made using class 10 physics CBSE
The magnetic induction at point P which is at a distance class 10 physics CBSE
According to Mendeleevs Periodic Law the elements were class 10 chemistry CBSE
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Trending doubts
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE