
A tube of uniform cross-section $ A $ is bent to form a circular arc of radius $ R $ forming three quarters of a circle. A liquid of density $ \rho $ is formed through the tube with a linear speed $ v $. Find the net force exerted by the liquid on the tube.
Answer
539.4k+ views
Hint: To solve this question, first we will rewrite the given numeric data and then first we will find the change in momentum to solve for the Net Force exerted by the liquid on the tube. And then finally we will conclude the Net Force when change in momentum and time is found respectively.
Complete step by step solution:
Given that:
Cross-section, $ A $ ;
Circular radius $ = R $
Liquid of density $ = \rho $
Net force exerted by the liquid on the tube $ = ? $
Change in momentum of the liquid:
$= m{v^2} $
$= density \times volume $
$\therefore m = d \times A \times {H_m} $
$= (\rho )A\dfrac{3}{4}(2\pi R) $
Therefore,
$F = \dfrac{{\text{change in momentum}}}{{\text{change in time}}} $
$\Rightarrow F = \dfrac{{\sqrt {2\pi R + \dfrac{3}{4}(\rho )A{V^2}} }}{{\dfrac{3}{4}2\pi R/V}} $
$\Rightarrow F = \dfrac{1}{{\sqrt 3 }}\rho A{V^2} $
Hence, the net force exerted by the liquid on the tube is $ \dfrac{1}{{\sqrt 3 }}\rho A{V^2} $.
Note:
Remember that force is a vector, so when more than one charge exerts a force on another charge, the net force on that charge is the vector sum of the individual forces. Remember, too, that charges of the same sign exert repulsive forces on one another, while charges of opposite sign attract.
Complete step by step solution:
Given that:
Cross-section, $ A $ ;
Circular radius $ = R $
Liquid of density $ = \rho $
Net force exerted by the liquid on the tube $ = ? $
Change in momentum of the liquid:
$= m{v^2} $
$= density \times volume $
$\therefore m = d \times A \times {H_m} $
$= (\rho )A\dfrac{3}{4}(2\pi R) $
Therefore,
$F = \dfrac{{\text{change in momentum}}}{{\text{change in time}}} $
$\Rightarrow F = \dfrac{{\sqrt {2\pi R + \dfrac{3}{4}(\rho )A{V^2}} }}{{\dfrac{3}{4}2\pi R/V}} $
$\Rightarrow F = \dfrac{1}{{\sqrt 3 }}\rho A{V^2} $
Hence, the net force exerted by the liquid on the tube is $ \dfrac{1}{{\sqrt 3 }}\rho A{V^2} $.
Note:
Remember that force is a vector, so when more than one charge exerts a force on another charge, the net force on that charge is the vector sum of the individual forces. Remember, too, that charges of the same sign exert repulsive forces on one another, while charges of opposite sign attract.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

