Answer
Verified
479.7k+ views
Hint: Try to understand the system given in the question. We need to understand the property of the moment of inertia and conservation of angular momentum to solve this question.
Try to find the initial and final moment of inertia and then apply the law of conservation of angular momentum to solve the question.
Complete step by step answer:
Given, the mass of the uniform disk is, $M=50kg$
Radius of the disk, $R=0.4m$
The disk is rotating with an angular velocity, ${{\omega }_{i}}=10rad{{s}^{-1}}$
Now, we put two uniform circular rings, each of mass \[m=\text{ }6.25\text{ }kg\] and radius $r=0.2m$ , symmetrically on the disc in such a manner that they are touching each other along the axis of the disc and are horizontal.
Rings are at rest relative to the disk. So, we don’t have any external force or external torque on the disk.
To find the final angular velocity we will use the law of conservation of angular momentum.
Law of conservation of angular momentum gives that the initial and final angular momentum of the system is equal.
${{I}_{i}}{{\omega }_{i}}={{I}_{f}}{{\omega }_{f}}$
We know the value of initial angular velocity, and we can find out the moment of inertia of the initial and the final system.
So,
${{\omega }_{f}}=\dfrac{{{I}_{i}}{{\omega }_{i}}}{{{I}_{f}}}$
Now, moment of inertia of the uniform disk will be, ${{I}_{i}}=\dfrac{1}{2}M{{R}^{2}}$
Final moment of inertia of the system is, $\begin{align}
& {{I}_{f}}=\dfrac{1}{2}M{{R}^{2}}+2\times \left( {{I}_{cm}}+m{{r}^{2}} \right) \\
& {{I}_{f}}=\dfrac{1}{2}M{{R}^{2}}+2\times \left( m{{r}^{2}}+m{{r}^{2}} \right) \\
& {{I}_{f}}=\dfrac{1}{2}M{{R}^{2}}+4\times m{{r}^{2}} \\
\end{align}$
Now,
$\begin{align}
& {{\omega }_{f}}=\dfrac{{{I}_{i}}{{\omega }_{i}}}{{{I}_{f}}} \\
& {{\omega }_{f}}=\dfrac{\dfrac{1}{2}M{{R}^{2}}\times 10}{\dfrac{1}{2}M{{R}^{2}}+4\times m{{r}^{2}}} \\
& {{\omega }_{f}}=\dfrac{\dfrac{1}{2}\times 50\times {{0.4}^{2}}\times 10}{\dfrac{1}{2}\times 50\times {{0.4}^{2}}+4\times 6.25\times {{0.2}^{2}}} \\
& {{\omega }_{f}}=\dfrac{40}{4+1} \\
& {{\omega }_{f}}=\dfrac{40}{5} \\
& {{\omega }_{f}}=8rad{{s}^{-1}} \\
\end{align}$
So, the final angular velocity will be, ${{\omega }_{f}}=8rad{{s}^{-1}}$.
Note: In this problem there is no external force or external torque is applied on the system. Because of the absence of any external force we can use the law of conservation of angular momentum on this system. Again, when solving this type of question always try to see if the units of the physical quantities are in the same measuring unit. If they are different then try to convert them to the same unit.
Try to find the initial and final moment of inertia and then apply the law of conservation of angular momentum to solve the question.
Complete step by step answer:
Given, the mass of the uniform disk is, $M=50kg$
Radius of the disk, $R=0.4m$
The disk is rotating with an angular velocity, ${{\omega }_{i}}=10rad{{s}^{-1}}$
Now, we put two uniform circular rings, each of mass \[m=\text{ }6.25\text{ }kg\] and radius $r=0.2m$ , symmetrically on the disc in such a manner that they are touching each other along the axis of the disc and are horizontal.
Rings are at rest relative to the disk. So, we don’t have any external force or external torque on the disk.
To find the final angular velocity we will use the law of conservation of angular momentum.
Law of conservation of angular momentum gives that the initial and final angular momentum of the system is equal.
${{I}_{i}}{{\omega }_{i}}={{I}_{f}}{{\omega }_{f}}$
We know the value of initial angular velocity, and we can find out the moment of inertia of the initial and the final system.
So,
${{\omega }_{f}}=\dfrac{{{I}_{i}}{{\omega }_{i}}}{{{I}_{f}}}$
Now, moment of inertia of the uniform disk will be, ${{I}_{i}}=\dfrac{1}{2}M{{R}^{2}}$
Final moment of inertia of the system is, $\begin{align}
& {{I}_{f}}=\dfrac{1}{2}M{{R}^{2}}+2\times \left( {{I}_{cm}}+m{{r}^{2}} \right) \\
& {{I}_{f}}=\dfrac{1}{2}M{{R}^{2}}+2\times \left( m{{r}^{2}}+m{{r}^{2}} \right) \\
& {{I}_{f}}=\dfrac{1}{2}M{{R}^{2}}+4\times m{{r}^{2}} \\
\end{align}$
Now,
$\begin{align}
& {{\omega }_{f}}=\dfrac{{{I}_{i}}{{\omega }_{i}}}{{{I}_{f}}} \\
& {{\omega }_{f}}=\dfrac{\dfrac{1}{2}M{{R}^{2}}\times 10}{\dfrac{1}{2}M{{R}^{2}}+4\times m{{r}^{2}}} \\
& {{\omega }_{f}}=\dfrac{\dfrac{1}{2}\times 50\times {{0.4}^{2}}\times 10}{\dfrac{1}{2}\times 50\times {{0.4}^{2}}+4\times 6.25\times {{0.2}^{2}}} \\
& {{\omega }_{f}}=\dfrac{40}{4+1} \\
& {{\omega }_{f}}=\dfrac{40}{5} \\
& {{\omega }_{f}}=8rad{{s}^{-1}} \\
\end{align}$
So, the final angular velocity will be, ${{\omega }_{f}}=8rad{{s}^{-1}}$.
Note: In this problem there is no external force or external torque is applied on the system. Because of the absence of any external force we can use the law of conservation of angular momentum on this system. Again, when solving this type of question always try to see if the units of the physical quantities are in the same measuring unit. If they are different then try to convert them to the same unit.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE