A uniform rope of length L and mass M is placed on a smooth fixed wedge as shown. Both ends of rope are at the same horizontal level. The rope is initially released from rest, then the magnitude of initial acceleration of the rope is
Answer
Verified
471.3k+ views
Hint: To solve this question, first find the component of the forces acting on the ropes on both sides and then equate them to find the equation. Add the equations for both sides of the rope to find the initial acceleration acting on the rope.
Complete step-by-step answer:
The length of the rope on the left side is ${{L}_{1}}$ and on the right side is ${{L}_{2}}$. The total length of the rope is L.
$L={{L}_{1}}+{{L}_{2}}$
Total mass of the rope is M.
The mass per unit length of the rope is $\dfrac{M}{L}$
So, the mass of the rope on the left side is ${{m}_{1}}={{L}_{1}}\dfrac{M}{L}$
Mass of the rope on the right side is ${{m}_{2}}={{L}_{2}}\dfrac{M}{L}$
Weight of the rope on the left side is, ${{m}_{1}}g=\dfrac{{{L}_{1}}M}{L}g$
Weight of the rope on the right side is, ${{m}_{2}}g=\dfrac{{{L}_{2}}M}{L}g$
Now, taking the component of the forces on the ropes,
On the left side of the rope,
$\begin{align}
& {{m}_{1}}g\sin \alpha -T={{m}_{1}}a \\
& \dfrac{{{L}_{1}}M}{L}\sin \alpha -T=\dfrac{{{L}_{1}}M}{L}a \\
\end{align}$
And, on the right side of the rope,
$\begin{align}
& T-{{m}_{2}}g\sin \beta ={{m}_{2}}a \\
& T-\dfrac{{{L}_{2}}M}{L}g\sin \beta =\dfrac{{{L}_{2}}M}{L}a \\
\end{align}$
Adding the above two equations,
$\begin{align}
& \dfrac{{{L}_{1}}M}{L}g\sin \alpha -\dfrac{{{L}_{2}}M}{L}g\sin \beta =\dfrac{{{L}_{1}}M}{L}a+\dfrac{{{L}_{2}}M}{L}a \\
& \left( {{L}_{1}}\sin \alpha -{{L}_{2}}\sin \beta \right)g=\left( {{L}_{1}}+{{L}_{2}} \right)a=La \\
& a=\dfrac{\left( {{L}_{1}}\sin \alpha -{{L}_{2}}\sin \beta \right)g}{a} \\
\end{align}$
Now, since both ends of the rope are in the same horizontal line or in the same vertical height, the components,
${{L}_{1}}\sin \alpha ={{L}_{2}}\sin \beta $
So, we can write,
$a=0$
So, the correct answer is “Option A”.
Note: In the above question, the angles of the triangle are different from each other and also the lengths of the rope on the both sides are also different. But then also the components in the vertical directions are equal to each other because the both ends of the rope are in the same horizontal plane or in the same vertical height.
Complete step-by-step answer:
The length of the rope on the left side is ${{L}_{1}}$ and on the right side is ${{L}_{2}}$. The total length of the rope is L.
$L={{L}_{1}}+{{L}_{2}}$
Total mass of the rope is M.
The mass per unit length of the rope is $\dfrac{M}{L}$
So, the mass of the rope on the left side is ${{m}_{1}}={{L}_{1}}\dfrac{M}{L}$
Mass of the rope on the right side is ${{m}_{2}}={{L}_{2}}\dfrac{M}{L}$
Weight of the rope on the left side is, ${{m}_{1}}g=\dfrac{{{L}_{1}}M}{L}g$
Weight of the rope on the right side is, ${{m}_{2}}g=\dfrac{{{L}_{2}}M}{L}g$
Now, taking the component of the forces on the ropes,
On the left side of the rope,
$\begin{align}
& {{m}_{1}}g\sin \alpha -T={{m}_{1}}a \\
& \dfrac{{{L}_{1}}M}{L}\sin \alpha -T=\dfrac{{{L}_{1}}M}{L}a \\
\end{align}$
And, on the right side of the rope,
$\begin{align}
& T-{{m}_{2}}g\sin \beta ={{m}_{2}}a \\
& T-\dfrac{{{L}_{2}}M}{L}g\sin \beta =\dfrac{{{L}_{2}}M}{L}a \\
\end{align}$
Adding the above two equations,
$\begin{align}
& \dfrac{{{L}_{1}}M}{L}g\sin \alpha -\dfrac{{{L}_{2}}M}{L}g\sin \beta =\dfrac{{{L}_{1}}M}{L}a+\dfrac{{{L}_{2}}M}{L}a \\
& \left( {{L}_{1}}\sin \alpha -{{L}_{2}}\sin \beta \right)g=\left( {{L}_{1}}+{{L}_{2}} \right)a=La \\
& a=\dfrac{\left( {{L}_{1}}\sin \alpha -{{L}_{2}}\sin \beta \right)g}{a} \\
\end{align}$
Now, since both ends of the rope are in the same horizontal line or in the same vertical height, the components,
${{L}_{1}}\sin \alpha ={{L}_{2}}\sin \beta $
So, we can write,
$a=0$
So, the correct answer is “Option A”.
Note: In the above question, the angles of the triangle are different from each other and also the lengths of the rope on the both sides are also different. But then also the components in the vertical directions are equal to each other because the both ends of the rope are in the same horizontal plane or in the same vertical height.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE