
A uniform steel rod of mass \[m\] and length \[l\] is pivoted at one end. If it is inclined with the horizontal at an angle \[\theta \], find its potential energy.
A. \[\dfrac{1}{2}mgl\cos \theta \]
B. \[\dfrac{1}{2}mgl\left( {1 - \sin \theta } \right)\]
C. \[mgl\cos \theta \]
D. \[mglsin\theta \]
Answer
583.8k+ views
Hint: Find the position of the centre of the mass of the rod and find the potential energy about this point. Thereafter find the change in the potential energy when the rod is rotated through an angle \[\theta .\]
Complete step by step answer:It is given that, mass of the rod = \[m\], Length of the rod = \[l\] and Angle = \[\theta \]
We know that the centre of mass of a uniform rod of length \[l\]above the ground is \[\dfrac{l}{2}.\]
Therefore, the potential energy of the rod is given by \[\dfrac{{ - mgl}}{2}.\]
When, the rod is displaced through an angle \[\theta \], the height of the centre of mass from the ground becomes \[\dfrac{1}{2}\sin \theta .\]
So, the final potential energy of the rod becomes \[\dfrac{{ - mgl}}{2}\sin \theta .\]
Change in the potential energy = Final potential energy – Initial potential energy
\[ = \dfrac{{ - mgl}}{2}\sin \theta - \dfrac{{ - mgl}}{2}\] \[ = \dfrac{{mgl}}{2}\left( {1 - \sin \theta } \right)\]
Hence the correct option is (B).
Note:The centre of mass of a rigid body is defined as a point where the entire mass of the body is supposed to be concentrated; the nature of the motion of the body shall remain unaffected, if all the forces acting on the body were applied directly on the centre of mass of the body. For rigid bodies of regular geometrical shapes and having uniform distribution of mass, the centre of mass is at the geometrical centre. In case of a uniform rod of length \[l\], the centre of mass lies at the centre of the rod.
Complete step by step answer:It is given that, mass of the rod = \[m\], Length of the rod = \[l\] and Angle = \[\theta \]
We know that the centre of mass of a uniform rod of length \[l\]above the ground is \[\dfrac{l}{2}.\]
Therefore, the potential energy of the rod is given by \[\dfrac{{ - mgl}}{2}.\]
When, the rod is displaced through an angle \[\theta \], the height of the centre of mass from the ground becomes \[\dfrac{1}{2}\sin \theta .\]
So, the final potential energy of the rod becomes \[\dfrac{{ - mgl}}{2}\sin \theta .\]
Change in the potential energy = Final potential energy – Initial potential energy
\[ = \dfrac{{ - mgl}}{2}\sin \theta - \dfrac{{ - mgl}}{2}\] \[ = \dfrac{{mgl}}{2}\left( {1 - \sin \theta } \right)\]
Hence the correct option is (B).
Note:The centre of mass of a rigid body is defined as a point where the entire mass of the body is supposed to be concentrated; the nature of the motion of the body shall remain unaffected, if all the forces acting on the body were applied directly on the centre of mass of the body. For rigid bodies of regular geometrical shapes and having uniform distribution of mass, the centre of mass is at the geometrical centre. In case of a uniform rod of length \[l\], the centre of mass lies at the centre of the rod.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

