
A veranda of width 2.25 m is constructed all along outside a room which is 5.5 m long and 4 m wide. Find:
(i) The area of the veranda.
(ii) The cost of cementing the floor of the veranda at the cost of Rs. 200 per sq. m.
Answer
532.8k+ views
Hint: To find the area of the veranda, we will need to find the dimensions of the veranda by considering its width. We will subtract the area of the room from the area of the room and veranda. After finding the area, we will multiply it by the cost per sq. m to find the total cost.
Complete step-by-step answer:
Let us draw a diagram to help us find the area.
We will find the area of the veranda by subtracting the area of the smaller rectangle from the larger rectangle.
The dimensions of the inner rectangle are 5.5m 4 m. Thus, the area of the rectangle is the product of length and width.
Area = Length Width
To find the area of the larger rectangle, we must first find its dimensions. The length will be the length of the inner rectangle plus the length of the veranda.
Thus, Length = 5.5 + 2.25 + 2.25 m
The width of the outer rectangle will be the width of the inner rectangle plus the width of the veranda.
Thus, Width = 4 + 2.25 + 2.25 m
Now, after finding the dimensions of the outer rectangle, we can find its area.
Area = Length Width
Hence, the area of the veranda is the difference between the two areas.
Area = Outer Area – Inner Area
= 85 – 22 sq. m
= 63 sq. m
Thus, the area of the veranda is 63 sq. m.
Now, to find the cost of cementing the veranda, we must multiply the area of the veranda by the cost per sq. m which is Rupees 200.
Hence, Total Cost = Area Cost per sq. m
= 63 200
= 12600
So the area of the veranda is 63 sq. m and the cost of cementing is Rs. 12600.
Note: There is another method to find the area of the veranda. We can split the veranda into four smaller rectangles, find their areas individually, and add them to get the total area. However, this method can be slightly longer and will involve more difficult calculations.
Complete step-by-step answer:
Let us draw a diagram to help us find the area.

We will find the area of the veranda by subtracting the area of the smaller rectangle from the larger rectangle.
The dimensions of the inner rectangle are 5.5m
Area = Length
To find the area of the larger rectangle, we must first find its dimensions. The length will be the length of the inner rectangle plus the length of the veranda.
Thus, Length = 5.5 + 2.25 + 2.25 m
The width of the outer rectangle will be the width of the inner rectangle plus the width of the veranda.
Thus, Width = 4 + 2.25 + 2.25 m
Now, after finding the dimensions of the outer rectangle, we can find its area.
Area = Length
Hence, the area of the veranda is the difference between the two areas.
Area = Outer Area – Inner Area
= 85 – 22 sq. m
= 63 sq. m
Thus, the area of the veranda is 63 sq. m.
Now, to find the cost of cementing the veranda, we must multiply the area of the veranda by the cost per sq. m which is Rupees 200.
Hence, Total Cost = Area
= 63
= 12600
So the area of the veranda is 63 sq. m and the cost of cementing is Rs. 12600.
Note: There is another method to find the area of the veranda. We can split the veranda into four smaller rectangles, find their areas individually, and add them to get the total area. However, this method can be slightly longer and will involve more difficult calculations.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Questions & Answers - Ask your doubts

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Science: Engaging Questions & Answers for Success

Trending doubts
A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the full form of POSCO class 10 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

How do you prove that the diagonals of a rectangle class 10 maths CBSE
