Answer
Verified
445.2k+ views
Hint: It is given that an ideal gas is pumped out of a vessel, which has a volume \[{V_0}\] at the constant rate of \[\dfrac{{dV}}{{dt}} = r\]. Use the ideal gas equation and apply the boundary conditions to find the relationship between pressure and time and use that to find the time taken before half the gas is out.
Complete step by step answer:
Let us assume that the volume of the vessel is \[{V_0}\] and the ideal gas is at a pressure \[{P_0}\]at a temperature \[T\]. The initial conditions are given using ideal gas law equation which states,
\[PV = nRT\]
From this equation we know that Pressure and volume are constant. Hence on differentiating on both sides we get ,
\[ \Rightarrow PdV + VdP = 0\]
From the given statement we know that,
\[\dfrac{{dV}}{{dt}} = r\]
Rearranging this , we get,
\[dV = rdt\]
Substituting this in equation , we get
\[ \Rightarrow P(r \times dt) + VdP = 0\]
\[ \Rightarrow P(r \times dt) = - VdP\]
Now, the gas is said to occupy the volume of the vessel, substituting this , we get
\[ \Rightarrow rdt = - {V_0}\dfrac{{dP}}{P}\]
\[ \Rightarrow - \dfrac{r}{{{V_0}}}dt = \dfrac{{dP}}{P}\]
Integrating on both sides , we get
\[ \Rightarrow - \dfrac{r}{{{V_0}}}\int {} dt = \int {\dfrac{{dP}}{P}} \]
On applying laws of integration we get,
\[ \Rightarrow - \dfrac{r}{{{V_0}}}t + c = \ln (P)\]-------(1)
Now, initially when the gas is inside the vessel, the pressure of the gas is \[{P_0}\] and \[t = 0\]. Substituting this
\[ \Rightarrow - \dfrac{r}{{{V_0}}}(0) + c = \ln ({P_0})\]
\[ \Rightarrow c = \ln ({P_0})\]
Substituting c in equation 1 , we get,
\[ \Rightarrow - \dfrac{r}{{{V_0}}}t + \ln ({P_0}) = \ln (P)\]
Removing ln on both sides , we get,
\[ \Rightarrow {e^{ - \dfrac{r}{{{V_0}}}t}} = \dfrac{P}{{{P_0}}}\] (using property \[\ln (A) - \ln (B) = \ln (\dfrac{A}{B})\])
\[ \Rightarrow {e^{ - \dfrac{r}{{{V_0}}}t}}{P_0} = P\]
Now, when half the volume of the gas is pumped out, we know that
\[ \Rightarrow \dfrac{{{P_0}{V_0}}}{{P{V_0}}} = \dfrac{{nRT}}{{\dfrac{{nRT}}{2}}}\], where the numerator represent the initial conditions and denominator represent final conditions when the gas is let out.
Re-arranging this , we get,
\[ \Rightarrow P = \dfrac{{{P_0}}}{2}\]
Substituting this in the general pressure relation , we get,
\[ \Rightarrow {e^{ - \dfrac{r}{{{V_0}}}t}}{P_0} = \dfrac{{{P_0}}}{2}\]
Cancelling out the common terms, we get
\[ \Rightarrow {e^{ - \dfrac{r}{{{V_0}}}t}} = \dfrac{1}{2}\]
Removing the exponential term, we get,
\[ \Rightarrow - \dfrac{r}{{{V_0}}}t = \ln (\dfrac{1}{2})\]
On rearranging this we get,
\[ \Rightarrow t = \dfrac{{{V_0}\ln 2}}{r}\]
Thus the relation has been established between pressure as a function of time.
Note: Ideal gas is a theoretically made up gas which is composed of particles that don’t have intermolecular forces of attraction or repulsion between them under applied pressure and volume. This is considered to be the ideal state of the gas.
Complete step by step answer:
Let us assume that the volume of the vessel is \[{V_0}\] and the ideal gas is at a pressure \[{P_0}\]at a temperature \[T\]. The initial conditions are given using ideal gas law equation which states,
\[PV = nRT\]
From this equation we know that Pressure and volume are constant. Hence on differentiating on both sides we get ,
\[ \Rightarrow PdV + VdP = 0\]
From the given statement we know that,
\[\dfrac{{dV}}{{dt}} = r\]
Rearranging this , we get,
\[dV = rdt\]
Substituting this in equation , we get
\[ \Rightarrow P(r \times dt) + VdP = 0\]
\[ \Rightarrow P(r \times dt) = - VdP\]
Now, the gas is said to occupy the volume of the vessel, substituting this , we get
\[ \Rightarrow rdt = - {V_0}\dfrac{{dP}}{P}\]
\[ \Rightarrow - \dfrac{r}{{{V_0}}}dt = \dfrac{{dP}}{P}\]
Integrating on both sides , we get
\[ \Rightarrow - \dfrac{r}{{{V_0}}}\int {} dt = \int {\dfrac{{dP}}{P}} \]
On applying laws of integration we get,
\[ \Rightarrow - \dfrac{r}{{{V_0}}}t + c = \ln (P)\]-------(1)
Now, initially when the gas is inside the vessel, the pressure of the gas is \[{P_0}\] and \[t = 0\]. Substituting this
\[ \Rightarrow - \dfrac{r}{{{V_0}}}(0) + c = \ln ({P_0})\]
\[ \Rightarrow c = \ln ({P_0})\]
Substituting c in equation 1 , we get,
\[ \Rightarrow - \dfrac{r}{{{V_0}}}t + \ln ({P_0}) = \ln (P)\]
Removing ln on both sides , we get,
\[ \Rightarrow {e^{ - \dfrac{r}{{{V_0}}}t}} = \dfrac{P}{{{P_0}}}\] (using property \[\ln (A) - \ln (B) = \ln (\dfrac{A}{B})\])
\[ \Rightarrow {e^{ - \dfrac{r}{{{V_0}}}t}}{P_0} = P\]
Now, when half the volume of the gas is pumped out, we know that
\[ \Rightarrow \dfrac{{{P_0}{V_0}}}{{P{V_0}}} = \dfrac{{nRT}}{{\dfrac{{nRT}}{2}}}\], where the numerator represent the initial conditions and denominator represent final conditions when the gas is let out.
Re-arranging this , we get,
\[ \Rightarrow P = \dfrac{{{P_0}}}{2}\]
Substituting this in the general pressure relation , we get,
\[ \Rightarrow {e^{ - \dfrac{r}{{{V_0}}}t}}{P_0} = \dfrac{{{P_0}}}{2}\]
Cancelling out the common terms, we get
\[ \Rightarrow {e^{ - \dfrac{r}{{{V_0}}}t}} = \dfrac{1}{2}\]
Removing the exponential term, we get,
\[ \Rightarrow - \dfrac{r}{{{V_0}}}t = \ln (\dfrac{1}{2})\]
On rearranging this we get,
\[ \Rightarrow t = \dfrac{{{V_0}\ln 2}}{r}\]
Thus the relation has been established between pressure as a function of time.
Note: Ideal gas is a theoretically made up gas which is composed of particles that don’t have intermolecular forces of attraction or repulsion between them under applied pressure and volume. This is considered to be the ideal state of the gas.
Recently Updated Pages
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
The number of moles of KMnO4 that will be needed to class 11 chemistry JEE_Main
The oxidation process involves class 11 chemistry JEE_Main
A car starts from rest to cover a distance s The coefficient class 11 physics JEE_Main
The transalkenes are formed by the reduction of alkynes class 11 chemistry JEE_Main
At what temperature will the total KE of 03 mol of class 11 chemistry JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
On which part of the tongue most of the taste gets class 11 biology CBSE