Answer
Verified
442.2k+ views
Hint: If we want to fill the vessel up to a height h without leakage the pressure on the top layer of the water at a height h must be equal to the pressure on the liquid drops formed at the bottom holes of the vessel. The pressure on the liquid drop also includes the pressure due to the surface tension of the water.
Formulae used:
The rise in the height \[h\] of water in a capillary tube is given by
\[h = \dfrac{{2T}}{{R\rho g}}\] …… (1)
Here, \[T\] is the surface tension of water, \[R\] is radius of the capillary tube, \[\rho \] is density of the water and \[g\] is acceleration due to gravity.
Complete step by step answer:
We have given that the diameter of the holes at the bottom of the vessel is \[0.1\,{\text{mm}}\].
\[D = 0.1\,{\text{mm}}\]
The surface tension of water is \[75\,{\text{dyne/cm}}\].
\[T = 75\,{\text{dyne/cm}}\]
Let us determine the radius of the holes at the bottom of the vessel.
\[R = \dfrac{{0.1\,{\text{mm}}}}{2}\]
\[ \Rightarrow R = 0.05\,{\text{mm}}\]
\[ \Rightarrow R = \left( {0.05\,{\text{mm}}} \right)\left( {\dfrac{{{{10}^{ - 1}}\,{\text{m}}}}{{1\,{\text{cm}}}}} \right)\]
\[ \Rightarrow R = 5 \times {10^{ - 3}}\,{\text{cm}}\]
Hence, the radius of the holes is \[5 \times {10^{ - 3}}\,{\text{cm}}\]. The radius of the holes at the bottom of the vessel and the radius of the water drops formed at the bottom of the vessel is the same.
The pressure \[{P_{top}}\] on the water at the top of the water at the height \[h\] is the sum of the atmospheric pressure \[{P_0}\] and pressure at height.
\[{P_{top}} = {P_0} + h\rho g\]
The pressure \[{P_{drop}}\] on the water drops at the bottom of the vessel is equal to the sum of the atmospheric pressure \[{P_0}\] and pressure on drop due to surface tension.
\[{P_{drop}} = {P_0} + \dfrac{{2T}}{R}\]
The pressure on the water at the top of the water at the height \[h\] is equal to the pressure on the liquid drops at the holes of the vessel in order to fill the vessel without leakage.
\[{P_{top}} = {P_{drop}}\]
Substitute \[{P_0} + h\rho g\] for \[{P_{top}}\] and \[{P_0} + \dfrac{{2T}}{R}\] for \[{P_{drop}}\] in the above equation.
\[{P_0} + h\rho g = {P_0} + \dfrac{{2T}}{R}\]
\[ \Rightarrow h\rho g = \dfrac{{2T}}{R}\]
\[ \Rightarrow h = \dfrac{{2T}}{{R\rho g}}\]
Substitute \[75\,{\text{dyne/cm}}\] for \[T\], \[5 \times {10^{ - 3}}\,{\text{cm}}\] for \[R\], \[1\,{\text{g/c}}{{\text{m}}^{\text{3}}}\] for \[\rho \] and \[1000\,{\text{cm/}}{{\text{s}}^2}\] for \[g\] in the above equation.
\[ \Rightarrow h = \dfrac{{2\left( {75\,{\text{dyne/cm}}} \right)}}{{\left( {5 \times {{10}^{ - 3}}\,{\text{cm}}} \right)\left( {1000\,{\text{cm/}}{{\text{s}}^2}} \right)\left( {1\,{\text{g/c}}{{\text{m}}^{\text{3}}}} \right)}}\]
\[ \therefore h = 30\,{\text{cm}}\]
Therefore, the maximum height up to which the water can be filled without leakage is \[30\,{\text{cm}}\].
Hence, the correct option is D.
Note: One can also solve the same question by another method. One can equate the weight of the drop with the vertical component of the surface tension due to water as the weight of the water drop in vertically downward direction is balanced by the vertical component of the surface tension due to water acting in vertically upward direction.
Formulae used:
The rise in the height \[h\] of water in a capillary tube is given by
\[h = \dfrac{{2T}}{{R\rho g}}\] …… (1)
Here, \[T\] is the surface tension of water, \[R\] is radius of the capillary tube, \[\rho \] is density of the water and \[g\] is acceleration due to gravity.
Complete step by step answer:
We have given that the diameter of the holes at the bottom of the vessel is \[0.1\,{\text{mm}}\].
\[D = 0.1\,{\text{mm}}\]
The surface tension of water is \[75\,{\text{dyne/cm}}\].
\[T = 75\,{\text{dyne/cm}}\]
Let us determine the radius of the holes at the bottom of the vessel.
\[R = \dfrac{{0.1\,{\text{mm}}}}{2}\]
\[ \Rightarrow R = 0.05\,{\text{mm}}\]
\[ \Rightarrow R = \left( {0.05\,{\text{mm}}} \right)\left( {\dfrac{{{{10}^{ - 1}}\,{\text{m}}}}{{1\,{\text{cm}}}}} \right)\]
\[ \Rightarrow R = 5 \times {10^{ - 3}}\,{\text{cm}}\]
Hence, the radius of the holes is \[5 \times {10^{ - 3}}\,{\text{cm}}\]. The radius of the holes at the bottom of the vessel and the radius of the water drops formed at the bottom of the vessel is the same.
The pressure \[{P_{top}}\] on the water at the top of the water at the height \[h\] is the sum of the atmospheric pressure \[{P_0}\] and pressure at height.
\[{P_{top}} = {P_0} + h\rho g\]
The pressure \[{P_{drop}}\] on the water drops at the bottom of the vessel is equal to the sum of the atmospheric pressure \[{P_0}\] and pressure on drop due to surface tension.
\[{P_{drop}} = {P_0} + \dfrac{{2T}}{R}\]
The pressure on the water at the top of the water at the height \[h\] is equal to the pressure on the liquid drops at the holes of the vessel in order to fill the vessel without leakage.
\[{P_{top}} = {P_{drop}}\]
Substitute \[{P_0} + h\rho g\] for \[{P_{top}}\] and \[{P_0} + \dfrac{{2T}}{R}\] for \[{P_{drop}}\] in the above equation.
\[{P_0} + h\rho g = {P_0} + \dfrac{{2T}}{R}\]
\[ \Rightarrow h\rho g = \dfrac{{2T}}{R}\]
\[ \Rightarrow h = \dfrac{{2T}}{{R\rho g}}\]
Substitute \[75\,{\text{dyne/cm}}\] for \[T\], \[5 \times {10^{ - 3}}\,{\text{cm}}\] for \[R\], \[1\,{\text{g/c}}{{\text{m}}^{\text{3}}}\] for \[\rho \] and \[1000\,{\text{cm/}}{{\text{s}}^2}\] for \[g\] in the above equation.
\[ \Rightarrow h = \dfrac{{2\left( {75\,{\text{dyne/cm}}} \right)}}{{\left( {5 \times {{10}^{ - 3}}\,{\text{cm}}} \right)\left( {1000\,{\text{cm/}}{{\text{s}}^2}} \right)\left( {1\,{\text{g/c}}{{\text{m}}^{\text{3}}}} \right)}}\]
\[ \therefore h = 30\,{\text{cm}}\]
Therefore, the maximum height up to which the water can be filled without leakage is \[30\,{\text{cm}}\].
Hence, the correct option is D.
Note: One can also solve the same question by another method. One can equate the weight of the drop with the vertical component of the surface tension due to water as the weight of the water drop in vertically downward direction is balanced by the vertical component of the surface tension due to water acting in vertically upward direction.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE