Answer
Verified
449.4k+ views
Hint: To solve this question, i.e., to find the velocity of the wave. We will consider the total distance as the wave is moving to and fro, then in the formula of velocity, we will apply the values given to us in the question, then with that we will get our required answer.
Complete step by step answer:
We have been given a figure where a wave in slinky travelled to and fro in \[5{\text{ }}sec\] and the length of the slinky is \[5{\text{ }}m.\] We need to find the velocity of wave.
Since, it is given that the wave moves to and fro in the slinky. Therefore, the total distance, \[\Rightarrow d{\text{ }} = {\text{ }}2 \times 5{\text{ }} = {\text{ }}10{\text{ }}m\]
The given time, \[t{\text{ }} = {\text{ }}5{\text{ }}\sec \]
We know that, Velocity $ = \dfrac{{total{\text{ }}distance}}{{time}}$
On putting the values in the above formula, we get
Velocity \[ = \dfrac{{10}}{5}\]
Velocity \[ = 2{\text{ }}m{s^{ - 1}}\]
So, the velocity of wave is \[2{\text{ }}m{s^{ - 1}}.\]
Thus, option (C) is correct.
Note: Students must be wondering, what does slinky stand here. So, the slinky is a simple toy, it consists of a helical spring made up of plastic or metal. Slinky shows the effects of many phenomena at once. For example, if a slinky is not moving, it will possess potential or stored energy. But if it starts down the stairs, gravity pulls on it, then the potential energy is converted to kinetic energy. Slinky shows characteristics like inertia, as If a slinky is standing on its end without any external force, it will stay like it, just like inertia.
Complete step by step answer:
We have been given a figure where a wave in slinky travelled to and fro in \[5{\text{ }}sec\] and the length of the slinky is \[5{\text{ }}m.\] We need to find the velocity of wave.
Since, it is given that the wave moves to and fro in the slinky. Therefore, the total distance, \[\Rightarrow d{\text{ }} = {\text{ }}2 \times 5{\text{ }} = {\text{ }}10{\text{ }}m\]
The given time, \[t{\text{ }} = {\text{ }}5{\text{ }}\sec \]
We know that, Velocity $ = \dfrac{{total{\text{ }}distance}}{{time}}$
On putting the values in the above formula, we get
Velocity \[ = \dfrac{{10}}{5}\]
Velocity \[ = 2{\text{ }}m{s^{ - 1}}\]
So, the velocity of wave is \[2{\text{ }}m{s^{ - 1}}.\]
Thus, option (C) is correct.
Note: Students must be wondering, what does slinky stand here. So, the slinky is a simple toy, it consists of a helical spring made up of plastic or metal. Slinky shows the effects of many phenomena at once. For example, if a slinky is not moving, it will possess potential or stored energy. But if it starts down the stairs, gravity pulls on it, then the potential energy is converted to kinetic energy. Slinky shows characteristics like inertia, as If a slinky is standing on its end without any external force, it will stay like it, just like inertia.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Find the value of the expression given below sin 30circ class 11 maths CBSE
What is the length of the alimentary canal in human class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is BLO What is the full form of BLO class 8 social science CBSE