![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
A wave of frequency $500\,Hz$ has a wave velocity of $350\,m\,{s^{ - 1}}$ .
1) Find the distance between the two points which has ${60^0}$ out of phase.
2) Find the phase difference between two displacements at a certain point of time ${10^{ - 3}}\,s$ apart?
Answer
385.2k+ views
Hint: In this question, we will first calculate the wavelength of the wave from the velocity and the frequency already given to us. Then we shall use the relation that a phase difference of $2\pi $ is equivalent to a path difference of $\lambda $ and calculate the path difference by substituting the required values in the formula $x = \dfrac{{\phi \lambda }}{{2\pi }}$ . Further we shall calculate the distance travelled by the wave using the time given to us. Again, making proper substitutions, we will get our answer.
Complete step by step answer:
The velocity of the wave is given to be $V = 350\,m\,{s^{ - 1}}$
Also, frequency of the wave is given to be $\upsilon = 500\,Hz$
The wavelength, frequency and the velocity of the wave are related as $V = \lambda \upsilon $ where V is the velocity of the wave, $\lambda $ is the wavelength of the wave and $\upsilon $ is the frequency of the wave.
Substituting the known values, we get,
$\dfrac{{350}}{{500}} = \lambda $
$ \Rightarrow \lambda = 0.7\,m$
1) We are supposed to calculate the distance between the two points given that they have a phase of ${60^0}$
The same phase difference expressed in radians is equal to $\phi = \dfrac{\pi }{3}$
A phase difference of $2\pi $ is equivalent to a path difference of $\lambda $
Hence, we can say that if the path difference is $x$ for a phase difference of $\phi = \dfrac{\pi }{3}$
$\phi = \dfrac{{2\pi x}}{\lambda }$
This can be rewritten as
$x = \dfrac{{\phi \lambda }}{{2\pi }}$
Substituting the known values, we get,
$x = \dfrac{{\pi \times 0.7}}{{6\pi }}$
$ \Rightarrow x = 0.116\,m$
2) The velocity of the wave is given to be $V = 350\,m\,{s^{ - 1}}$
The time taken is given as $t = {10^{ - 3\,}}\,s$
So, the distance travelled by the wave is equal to $x = vt$ where x is the distance travelled.
Substituting in the equation, we get,
$x = 350 \times {10^{ - 3}}$
$ \Rightarrow x = 0.35\,m$
So, now we know the path difference and we are supposed to calculate the phase difference.
Using the same relation as used before, we have,
$\phi = \dfrac{{2\pi x}}{\lambda }$
Substituting the values, we get,
$\phi = \dfrac{{2\pi \times 0.35}}{{0.7}}$
$ \Rightarrow \phi = \pi $
Note: The phase difference refers to the magnitude of the difference in the phase. It can be both leading or lagging. It should be specified which quantity is leading and which is lagging. In this particular question, we didn’t specify the lead or lag because we were supposed to deal with quantities that could be calculated without knowing whether it is a lead or lag.
Complete step by step answer:
The velocity of the wave is given to be $V = 350\,m\,{s^{ - 1}}$
Also, frequency of the wave is given to be $\upsilon = 500\,Hz$
The wavelength, frequency and the velocity of the wave are related as $V = \lambda \upsilon $ where V is the velocity of the wave, $\lambda $ is the wavelength of the wave and $\upsilon $ is the frequency of the wave.
Substituting the known values, we get,
$\dfrac{{350}}{{500}} = \lambda $
$ \Rightarrow \lambda = 0.7\,m$
1) We are supposed to calculate the distance between the two points given that they have a phase of ${60^0}$
The same phase difference expressed in radians is equal to $\phi = \dfrac{\pi }{3}$
A phase difference of $2\pi $ is equivalent to a path difference of $\lambda $
Hence, we can say that if the path difference is $x$ for a phase difference of $\phi = \dfrac{\pi }{3}$
$\phi = \dfrac{{2\pi x}}{\lambda }$
This can be rewritten as
$x = \dfrac{{\phi \lambda }}{{2\pi }}$
Substituting the known values, we get,
$x = \dfrac{{\pi \times 0.7}}{{6\pi }}$
$ \Rightarrow x = 0.116\,m$
2) The velocity of the wave is given to be $V = 350\,m\,{s^{ - 1}}$
The time taken is given as $t = {10^{ - 3\,}}\,s$
So, the distance travelled by the wave is equal to $x = vt$ where x is the distance travelled.
Substituting in the equation, we get,
$x = 350 \times {10^{ - 3}}$
$ \Rightarrow x = 0.35\,m$
So, now we know the path difference and we are supposed to calculate the phase difference.
Using the same relation as used before, we have,
$\phi = \dfrac{{2\pi x}}{\lambda }$
Substituting the values, we get,
$\phi = \dfrac{{2\pi \times 0.35}}{{0.7}}$
$ \Rightarrow \phi = \pi $
Note: The phase difference refers to the magnitude of the difference in the phase. It can be both leading or lagging. It should be specified which quantity is leading and which is lagging. In this particular question, we didn’t specify the lead or lag because we were supposed to deal with quantities that could be calculated without knowing whether it is a lead or lag.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the value of x if the mode of the following data class 11 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
10 examples of friction in our daily life
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Prokaryotic Cells and Eukaryotic Cells
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State and prove Bernoullis theorem class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
How many valence electrons does nitrogen have class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)