Answer
Verified
444k+ views
Hint:Convert the angular velocity from rev/sec to rev/s. Determine the angular retardation required to stop the rotating wheel. Recall the formula for the torque acting on the rotating body in terms of its moment of inertia.
Formula used:
1. Angular acceleration, \[\alpha = \dfrac{{{\omega _f} - {\omega _0}}}{t}\],
where, \[{\omega _f}\] is the final angular velocity and \[{\omega _0}\] is the initial angular velocity.
2. Torque, \[\tau = I\alpha \]
Here, I is the moment of inertia.
Complete step by step answer:
We have given that the initial angular velocity of the wheel is 20 rev/sec. Let us convert it into rad/sec as follows,
\[{\omega _0} = \left( {20\dfrac{{{\text{rev}}}}{{{\text{sec}}}}} \right)\left( {\dfrac{{2{\pi ^c}}}{{1\,{\text{rev}}}}} \right) = 40\pi \,{\text{rad/sec}}\]
The angular acceleration or we can say angular retardation required to stop the wheel in 10 seconds is can be calculated as,
\[\alpha = \dfrac{{{\omega _0}}}{t}\]
Substituting \[{\omega _0} = 40\pi \,{\text{rad/sec}}\] and \[t = 10\,{\text{s}}\] in the above equation, we get,
\[\alpha = \dfrac{{40\pi }}{{10}}\]
\[ \Rightarrow \alpha = 4\pi \,{\text{rad/}}{{\text{s}}^2}\]
The torque acting on the rotating wheel to stop it is given by,
\[\tau = I\alpha \]
Here, I is the moment of inertia.
Substituting \[5 \times {10^{ - 3}}\,{\text{kg}}\,{{\text{m}}^2}\] for I and \[4\pi \,{\text{rad/}}{{\text{s}}^2}\] for \[\alpha \] in the above equation, we get,
\[\tau = \left( {5 \times {{10}^{ - 3}}} \right)\left( {4\pi } \right)\]
\[ \therefore \tau = 2\pi \times {10^{ - 2}}\,{\text{N}} - {\text{m}}\]
So, the correct answer is option A.
Note:Students should always convert the angular speed from rev/sec into rad/sec. To do so, note that 1 revolution is \[360^\circ \,{\text{or 2}}{\pi ^c}\]. The angular acceleration is given as, \[\alpha = \dfrac{{{\omega _f} - {\omega _0}}}{t}\], where, \[{\omega _f}\] is the final angular velocity and \[{\omega _0}\] is the initial angular velocity. Since the wheel stops at final time, we have taken the final angular velocity as zero. Note that, if the angular acceleration has negative sign, the body is said to undergo retardation.
Formula used:
1. Angular acceleration, \[\alpha = \dfrac{{{\omega _f} - {\omega _0}}}{t}\],
where, \[{\omega _f}\] is the final angular velocity and \[{\omega _0}\] is the initial angular velocity.
2. Torque, \[\tau = I\alpha \]
Here, I is the moment of inertia.
Complete step by step answer:
We have given that the initial angular velocity of the wheel is 20 rev/sec. Let us convert it into rad/sec as follows,
\[{\omega _0} = \left( {20\dfrac{{{\text{rev}}}}{{{\text{sec}}}}} \right)\left( {\dfrac{{2{\pi ^c}}}{{1\,{\text{rev}}}}} \right) = 40\pi \,{\text{rad/sec}}\]
The angular acceleration or we can say angular retardation required to stop the wheel in 10 seconds is can be calculated as,
\[\alpha = \dfrac{{{\omega _0}}}{t}\]
Substituting \[{\omega _0} = 40\pi \,{\text{rad/sec}}\] and \[t = 10\,{\text{s}}\] in the above equation, we get,
\[\alpha = \dfrac{{40\pi }}{{10}}\]
\[ \Rightarrow \alpha = 4\pi \,{\text{rad/}}{{\text{s}}^2}\]
The torque acting on the rotating wheel to stop it is given by,
\[\tau = I\alpha \]
Here, I is the moment of inertia.
Substituting \[5 \times {10^{ - 3}}\,{\text{kg}}\,{{\text{m}}^2}\] for I and \[4\pi \,{\text{rad/}}{{\text{s}}^2}\] for \[\alpha \] in the above equation, we get,
\[\tau = \left( {5 \times {{10}^{ - 3}}} \right)\left( {4\pi } \right)\]
\[ \therefore \tau = 2\pi \times {10^{ - 2}}\,{\text{N}} - {\text{m}}\]
So, the correct answer is option A.
Note:Students should always convert the angular speed from rev/sec into rad/sec. To do so, note that 1 revolution is \[360^\circ \,{\text{or 2}}{\pi ^c}\]. The angular acceleration is given as, \[\alpha = \dfrac{{{\omega _f} - {\omega _0}}}{t}\], where, \[{\omega _f}\] is the final angular velocity and \[{\omega _0}\] is the initial angular velocity. Since the wheel stops at final time, we have taken the final angular velocity as zero. Note that, if the angular acceleration has negative sign, the body is said to undergo retardation.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE