Answer
Verified
460.5k+ views
Hint: Calculate the horizontal and vertical displacements of point P. Then calculate the resultant displacement of the point P.
Formulae used:
The circumference \[C\] of the circle is given by
\[ \Rightarrow C = 2\pi r\] …… (1)
Here, \[r\] is the radius of the circle.
The resultant displacement \[s\] is given by
\[ \Rightarrow s = \sqrt {s_x^2 + s_y^2} \] …… (2)
Here, \[{s_x}\] is the horizontal component of displacement and \[{s_y}\] is the vertical component of displacement.
Complete step by step answer:
Calculate the horizontal displacement of the point P between the times \[{t_1}\] to \[{t_2}\].
The horizontal displacement \[{s_x}\] of the point P is equal to half of the circumference \[C\] of the wheel.
\[ \Rightarrow {s_x} = \dfrac{C}{2}\]
Substitute \[2\pi r\] for \[C\] in the above equation.
\[ \Rightarrow {s_x} = \dfrac{{2\pi r}}{2}\]
Substitute \[3.14\] for \[\pi \] and \[45\,{\text{cm}}\] for \[r\] in the above equation.
\[{s_x} = \dfrac{{2\left( {3.14} \right)\left( {45\,{\text{cm}}} \right)}}{2}\]
\[ \Rightarrow {s_x} = 141.3\,{\text{cm}}\]
Hence, the horizontal displacement of the point P is \[141.3\,{\text{cm}}\].
Calculate the vertical displacement of the point P between the times \[{t_1}\] to \[{t_2}\].
The vertical displacement \[{s_y}\] of the point P is equal to the diameter of the wheel which is twice the radius \[r\] of the wheel.
\[ \Rightarrow {s_y} = 2r\]
Substitute \[45\,{\text{cm}}\] for \[r\] in the above equation.
\[ \Rightarrow {s_y} = 2\left( {45\,{\text{cm}}} \right)\]
\[ \Rightarrow {s_y} = 90\,{\text{cm}}\]
Hence, the vertical displacement of the point P is \[90\,{\text{cm}}\].
Now calculate the resultant displacement \[s\] of the point P.
Substitute \[141.3\,{\text{cm}}\] for \[{s_x}\] and \[90\,{\text{cm}}\] for \[{s_y}\] in equation (2).
\[ \Rightarrow s = \sqrt {{{\left( {141.3\,{\text{cm}}} \right)}^2} + {{\left( {90\,{\text{cm}}} \right)}^2}} \]
\[ \Rightarrow s = 167.5\,{\text{cm}}\]
\[ \Rightarrow s = 168\,{\text{cm}}\]
Therefore, the displacement of the point P is \[168\,{\text{cm}}\].
Hence, the correct option is B.
Note:One may directly determine the diameter of the wheel to calculate the displacement of point P. But it is the vertical displacement and not the resultant displacement.
Formulae used:
The circumference \[C\] of the circle is given by
\[ \Rightarrow C = 2\pi r\] …… (1)
Here, \[r\] is the radius of the circle.
The resultant displacement \[s\] is given by
\[ \Rightarrow s = \sqrt {s_x^2 + s_y^2} \] …… (2)
Here, \[{s_x}\] is the horizontal component of displacement and \[{s_y}\] is the vertical component of displacement.
Complete step by step answer:
Calculate the horizontal displacement of the point P between the times \[{t_1}\] to \[{t_2}\].
The horizontal displacement \[{s_x}\] of the point P is equal to half of the circumference \[C\] of the wheel.
\[ \Rightarrow {s_x} = \dfrac{C}{2}\]
Substitute \[2\pi r\] for \[C\] in the above equation.
\[ \Rightarrow {s_x} = \dfrac{{2\pi r}}{2}\]
Substitute \[3.14\] for \[\pi \] and \[45\,{\text{cm}}\] for \[r\] in the above equation.
\[{s_x} = \dfrac{{2\left( {3.14} \right)\left( {45\,{\text{cm}}} \right)}}{2}\]
\[ \Rightarrow {s_x} = 141.3\,{\text{cm}}\]
Hence, the horizontal displacement of the point P is \[141.3\,{\text{cm}}\].
Calculate the vertical displacement of the point P between the times \[{t_1}\] to \[{t_2}\].
The vertical displacement \[{s_y}\] of the point P is equal to the diameter of the wheel which is twice the radius \[r\] of the wheel.
\[ \Rightarrow {s_y} = 2r\]
Substitute \[45\,{\text{cm}}\] for \[r\] in the above equation.
\[ \Rightarrow {s_y} = 2\left( {45\,{\text{cm}}} \right)\]
\[ \Rightarrow {s_y} = 90\,{\text{cm}}\]
Hence, the vertical displacement of the point P is \[90\,{\text{cm}}\].
Now calculate the resultant displacement \[s\] of the point P.
Substitute \[141.3\,{\text{cm}}\] for \[{s_x}\] and \[90\,{\text{cm}}\] for \[{s_y}\] in equation (2).
\[ \Rightarrow s = \sqrt {{{\left( {141.3\,{\text{cm}}} \right)}^2} + {{\left( {90\,{\text{cm}}} \right)}^2}} \]
\[ \Rightarrow s = 167.5\,{\text{cm}}\]
\[ \Rightarrow s = 168\,{\text{cm}}\]
Therefore, the displacement of the point P is \[168\,{\text{cm}}\].
Hence, the correct option is B.
Note:One may directly determine the diameter of the wheel to calculate the displacement of point P. But it is the vertical displacement and not the resultant displacement.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE