Answer
Verified
396k+ views
Hint: We need to be aware about the formula for perimeter and area of both square and that of a circle. Here, a wire is given in the form of a square i.e. the length of the wire will be its perimeter. Using this information, we could calculate the side of the square. After calculating the side we can use the formula for the circumference of a circle and equate it with the same length and find the radius of the circle. After radius and side have been calculated, the ratio of their areas is easy to calculate.
Complete step by step answer:
We are given a wire that has been molded in the shape of a square which means that the perimeter of the square is the length of the wire. The perimeter of a square of side a is $4a$, so we have:
$4a=5024$m
$\implies a=1256$m
Now, the same wire has been converted into a circle. The circumference of a circle of radius $r$ is $2\pi r$, and this will be equal to the length of the wire. So we have:
$2\pi r=5024$m
$\implies \pi r=2512$m
$\implies r=\dfrac{2512}{\pi}$
Now, we need to calculate the ratios of the areas.
Area of the square is given by $a^2$.
Area of a circle is given by $\pi r^2$
So, we need to find:
$\dfrac{{{1256}^{2}}}{\pi \times {{\left( \dfrac{2512}{\pi } \right)}^{2}}}$
$=\dfrac{1256\times 1256\times 22}{2512\times 2512\times 7}$
$=\dfrac{11}{7\times 2}=\dfrac{11}{14}$
Hence, the required ratio is 11:14.
Note: If you are not aware about the formulae related to the area and perimeter of a square and circle then you will not be able to solve this question, so it should be known. Moreover, do not try to square such big terms because later on, the ratio is to be found out which means that some terms will automatically get cancelled. So to make least calculation mistakes, do not square the terms prior to finding the ratio.
Complete step by step answer:
We are given a wire that has been molded in the shape of a square which means that the perimeter of the square is the length of the wire. The perimeter of a square of side a is $4a$, so we have:
$4a=5024$m
$\implies a=1256$m
Now, the same wire has been converted into a circle. The circumference of a circle of radius $r$ is $2\pi r$, and this will be equal to the length of the wire. So we have:
$2\pi r=5024$m
$\implies \pi r=2512$m
$\implies r=\dfrac{2512}{\pi}$
Now, we need to calculate the ratios of the areas.
Area of the square is given by $a^2$.
Area of a circle is given by $\pi r^2$
So, we need to find:
$\dfrac{{{1256}^{2}}}{\pi \times {{\left( \dfrac{2512}{\pi } \right)}^{2}}}$
$=\dfrac{1256\times 1256\times 22}{2512\times 2512\times 7}$
$=\dfrac{11}{7\times 2}=\dfrac{11}{14}$
Hence, the required ratio is 11:14.
Note: If you are not aware about the formulae related to the area and perimeter of a square and circle then you will not be able to solve this question, so it should be known. Moreover, do not try to square such big terms because later on, the ratio is to be found out which means that some terms will automatically get cancelled. So to make least calculation mistakes, do not square the terms prior to finding the ratio.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE