Answer
Verified
435.3k+ views
Hint: We will use the fact that the diagonals of a parallelogram bisect each other to obtain an equation that has the coordinates of point D as unknowns. We will solve this equation to obtain the coordinates of point D. Then we will find the vector equation of line BD using the coordinates of point B and point D. After that, we will convert this equation into the cartesian form.
Complete step by step answer:
We have a parallelogram ABCD. We know that the diagonals of the parallelogram bisect each other. This means that the diagonal AC and the diagonal BD have the same midpoint. We know that the position vector of a midpoint of two points with position vectors \[\overrightarrow{x}\] and $ \overrightarrow{y} $ is given by $ \dfrac{\overrightarrow{x}+\overrightarrow{y}}{2} $ .
We are given the following position vectors, $ \overrightarrow{\text{A}}=4\widehat{i}+5\widehat{j}-10\widehat{k} $ , $ \overrightarrow{\text{B}}=2\widehat{i}-3\widehat{j}+4\widehat{k} $ and \[\overrightarrow{\text{C}}=-\widehat{i}+2\widehat{j}+\widehat{k}\]. Let us assume that $ \overrightarrow{\text{D}}=a\widehat{i}+b\widehat{j}+c\widehat{k} $ .
We know that,
$ \text{midpoint of AC}=\text{midpoint of BD} $
Therefore, using the formula for position vector of a midpoint, we get the following,
$ \dfrac{\overrightarrow{\text{A}}+\overrightarrow{\text{C}}}{2}=\dfrac{\overrightarrow{\text{B}}+\overrightarrow{\text{D}}}{2} $
Substituting the position vectors of all the points, we get
\[\begin{align}
& \dfrac{4\widehat{i}+5\widehat{j}-10\widehat{k}-\widehat{i}+2\widehat{j}+\widehat{k}}{2}=\dfrac{2\widehat{i}-3\widehat{j}+4\widehat{k}+a\widehat{i}+b\widehat{j}+c\widehat{k}}{2} \\
& \Rightarrow \dfrac{3\widehat{i}+7\widehat{j}-9\widehat{k}}{2}=\dfrac{\left( 2+a \right)\widehat{i}+\left( -3+b \right)\widehat{j}+\left( 4+c \right)\widehat{k}}{2} \\
& \therefore \dfrac{3}{2}\widehat{i}+\dfrac{7}{2}\widehat{j}-\dfrac{9}{2}\widehat{k}=\dfrac{\left( 2+a \right)}{2}\widehat{i}+\dfrac{\left( -3+b \right)}{2}\widehat{j}+\dfrac{\left( 4+c \right)}{2}\widehat{k} \\
\end{align}\]
Comparing the coefficients, we have the following,
$ \begin{align}
& \dfrac{3}{2}=\dfrac{2+a}{2} \\
& \Rightarrow a+2=3 \\
& \therefore a=1 \\
\end{align} $
Similarly, we get
$ \begin{align}
& \dfrac{7}{2}=\dfrac{-3+b}{2} \\
& \Rightarrow -3+b=7 \\
& \therefore b=10 \\
\end{align} $
And also,
$ \begin{align}
& -\dfrac{9}{2}=\dfrac{4+c}{2} \\
& \Rightarrow 4+c=-9 \\
& \therefore c=-13 \\
\end{align} $
Hence, the position vector of point D is \[\widehat{i}+10\widehat{j}-13\widehat{k}\].
Now, we will find the vector equation of the line BD in the following manner,
$ \overrightarrow{\text{BD}}=\overrightarrow{\text{B}}+\lambda \left( \overrightarrow{\text{D}}-\overrightarrow{\text{B}} \right) $ , where $ \lambda $ is a parameter.
Substituting the position vectors of point B and D in the above equation, we get
$ \begin{align}
& \overrightarrow{\text{BD}}=2\widehat{i}-3\widehat{j}+4\widehat{k}+\lambda \left( \widehat{i}+10\widehat{j}-13\widehat{k}-2\widehat{i}+3\widehat{j}-4\widehat{k} \right) \\
& \Rightarrow \overrightarrow{\text{BD}}=2\widehat{i}-3\widehat{j}+4\widehat{k}+\lambda \left( -\widehat{i}+13\widehat{j}-17\widehat{k} \right) \\
& \therefore \overrightarrow{\text{BD}}=\left( 2-\lambda \right)\widehat{i}+\left( -3+13\lambda \right)\widehat{j}+\left( 4-17\lambda \right)\widehat{k} \\
\end{align} $
Next, we have to convert the above vector equation into cartesian form. We will equate the above equation with $ x\widehat{i}+y\widehat{j}+z\widehat{k} $ as follows,
$ \left( 2-\lambda \right)\widehat{i}+\left( -3+13\lambda \right)\widehat{j}+\left( 4-17\lambda \right)\widehat{k}=x\widehat{i}+y\widehat{j}+z\widehat{k} $
Comparing the coefficients, we get the following
$ \begin{align}
& x=2-\lambda \\
& \therefore \lambda =\dfrac{x-2}{-1} \\
\end{align} $
$ \begin{align}
& y=-3+13\lambda \\
& \therefore \lambda =\dfrac{y+3}{13} \\
\end{align} $
$ \begin{align}
& z=4-17\lambda \\
& \therefore \lambda =\dfrac{z-4}{-17} \\
\end{align} $
Therefore, the cartesian form of the vector equation is the following,
$ \lambda =\dfrac{x-2}{-1}=\dfrac{y+3}{13}=\dfrac{z-4}{-17} $
Note:
It is important that we know the formula for finding the vector equation of a line by using position vectors of two points. The conversion from the cartesian equation to the vector equation is the reverse of the process that we used to convert vector equation into a cartesian form. The calculations in such type of questions can be tricky since we are comparing coefficients in more than one place.
Complete step by step answer:
We have a parallelogram ABCD. We know that the diagonals of the parallelogram bisect each other. This means that the diagonal AC and the diagonal BD have the same midpoint. We know that the position vector of a midpoint of two points with position vectors \[\overrightarrow{x}\] and $ \overrightarrow{y} $ is given by $ \dfrac{\overrightarrow{x}+\overrightarrow{y}}{2} $ .
We are given the following position vectors, $ \overrightarrow{\text{A}}=4\widehat{i}+5\widehat{j}-10\widehat{k} $ , $ \overrightarrow{\text{B}}=2\widehat{i}-3\widehat{j}+4\widehat{k} $ and \[\overrightarrow{\text{C}}=-\widehat{i}+2\widehat{j}+\widehat{k}\]. Let us assume that $ \overrightarrow{\text{D}}=a\widehat{i}+b\widehat{j}+c\widehat{k} $ .
We know that,
$ \text{midpoint of AC}=\text{midpoint of BD} $
Therefore, using the formula for position vector of a midpoint, we get the following,
$ \dfrac{\overrightarrow{\text{A}}+\overrightarrow{\text{C}}}{2}=\dfrac{\overrightarrow{\text{B}}+\overrightarrow{\text{D}}}{2} $
Substituting the position vectors of all the points, we get
\[\begin{align}
& \dfrac{4\widehat{i}+5\widehat{j}-10\widehat{k}-\widehat{i}+2\widehat{j}+\widehat{k}}{2}=\dfrac{2\widehat{i}-3\widehat{j}+4\widehat{k}+a\widehat{i}+b\widehat{j}+c\widehat{k}}{2} \\
& \Rightarrow \dfrac{3\widehat{i}+7\widehat{j}-9\widehat{k}}{2}=\dfrac{\left( 2+a \right)\widehat{i}+\left( -3+b \right)\widehat{j}+\left( 4+c \right)\widehat{k}}{2} \\
& \therefore \dfrac{3}{2}\widehat{i}+\dfrac{7}{2}\widehat{j}-\dfrac{9}{2}\widehat{k}=\dfrac{\left( 2+a \right)}{2}\widehat{i}+\dfrac{\left( -3+b \right)}{2}\widehat{j}+\dfrac{\left( 4+c \right)}{2}\widehat{k} \\
\end{align}\]
Comparing the coefficients, we have the following,
$ \begin{align}
& \dfrac{3}{2}=\dfrac{2+a}{2} \\
& \Rightarrow a+2=3 \\
& \therefore a=1 \\
\end{align} $
Similarly, we get
$ \begin{align}
& \dfrac{7}{2}=\dfrac{-3+b}{2} \\
& \Rightarrow -3+b=7 \\
& \therefore b=10 \\
\end{align} $
And also,
$ \begin{align}
& -\dfrac{9}{2}=\dfrac{4+c}{2} \\
& \Rightarrow 4+c=-9 \\
& \therefore c=-13 \\
\end{align} $
Hence, the position vector of point D is \[\widehat{i}+10\widehat{j}-13\widehat{k}\].
Now, we will find the vector equation of the line BD in the following manner,
$ \overrightarrow{\text{BD}}=\overrightarrow{\text{B}}+\lambda \left( \overrightarrow{\text{D}}-\overrightarrow{\text{B}} \right) $ , where $ \lambda $ is a parameter.
Substituting the position vectors of point B and D in the above equation, we get
$ \begin{align}
& \overrightarrow{\text{BD}}=2\widehat{i}-3\widehat{j}+4\widehat{k}+\lambda \left( \widehat{i}+10\widehat{j}-13\widehat{k}-2\widehat{i}+3\widehat{j}-4\widehat{k} \right) \\
& \Rightarrow \overrightarrow{\text{BD}}=2\widehat{i}-3\widehat{j}+4\widehat{k}+\lambda \left( -\widehat{i}+13\widehat{j}-17\widehat{k} \right) \\
& \therefore \overrightarrow{\text{BD}}=\left( 2-\lambda \right)\widehat{i}+\left( -3+13\lambda \right)\widehat{j}+\left( 4-17\lambda \right)\widehat{k} \\
\end{align} $
Next, we have to convert the above vector equation into cartesian form. We will equate the above equation with $ x\widehat{i}+y\widehat{j}+z\widehat{k} $ as follows,
$ \left( 2-\lambda \right)\widehat{i}+\left( -3+13\lambda \right)\widehat{j}+\left( 4-17\lambda \right)\widehat{k}=x\widehat{i}+y\widehat{j}+z\widehat{k} $
Comparing the coefficients, we get the following
$ \begin{align}
& x=2-\lambda \\
& \therefore \lambda =\dfrac{x-2}{-1} \\
\end{align} $
$ \begin{align}
& y=-3+13\lambda \\
& \therefore \lambda =\dfrac{y+3}{13} \\
\end{align} $
$ \begin{align}
& z=4-17\lambda \\
& \therefore \lambda =\dfrac{z-4}{-17} \\
\end{align} $
Therefore, the cartesian form of the vector equation is the following,
$ \lambda =\dfrac{x-2}{-1}=\dfrac{y+3}{13}=\dfrac{z-4}{-17} $
Note:
It is important that we know the formula for finding the vector equation of a line by using position vectors of two points. The conversion from the cartesian equation to the vector equation is the reverse of the process that we used to convert vector equation into a cartesian form. The calculations in such type of questions can be tricky since we are comparing coefficients in more than one place.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE