Answer
Verified
469.2k+ views
Hint: In this particular question use the concept that the adjacent sides of the rectangle always makes a 90 degrees and the diagonals of the rectangle are always equal and also bisect each other so use these concepts to reach the solution of the question.
Complete step by step answer:
Given data:
$\angle BPC = {124^o}$................. (1)
Now as we see from the figure that APC is the diagonal of the rectangle which is a straight line so it makes a straight angle with the point p.
Now as we know that the straight angle = 180 degrees.
So, $\angle BPC + \angle BPA = {180^o}$
Now from equation (1) we have,
$ \Rightarrow {124^o} + \angle BPA = {180^o}$
$ \Rightarrow \angle BPA = {180^o} - {124^o} = {56^o}$............ (2)
Now as we know that in a rectangle the length of the diagonals are always equal and also bisect each other.
Therefore, PA = PB = PC = PB.
So triangles ABP, BCP, CDP, and DAP are an isosceles triangle.
Now as we know that in a isosceles triangle angles opposite to equal sides are always equal.
So in triangle ABP, as AP = BP, so $\angle PBA = \angle BAP$.............. (3)
Now as we know that in a triangle the sum of all angles are equal to 180 degrees.
So in triangle ABP we have,
$ \Rightarrow \angle PBA + \angle BAP + \angle BPA = {180^o}$
Now from equation (2) and (3) we have,
$ \Rightarrow \angle BAP + \angle BAP + {56^o} = {180^o}$
$ \Rightarrow \angle BAP = \dfrac{{{{180}^o} - {{56}^o}}}{2}$
$ \Rightarrow \angle BAP = \dfrac{{{{124}^o}}}{2} = {62^o}$
$ \Rightarrow \angle PBA = \angle BAP = {62^o}$
Now as we know in a rectangle opposite sides are equal and parallel to each other.
Therefore, $\angle PBA = \angle PDC = {62^o}$............. (4) (alternate angles)
Now as we know that in a rectangle adjacent sides of the rectangle always makes a 90 degrees.
Therefore, $\angle ADC = {90^o}$
$ \Rightarrow \angle ADP + \angle PDC = {90^o}$
Now from equation (4) we have,
$ \Rightarrow \angle ADP + {62^o} = {90^o}$
$ \Rightarrow \angle ADP = {90^o} - {62^o} = {28^o}$
So, the correct answer is “${28^o}$”.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall all the properties of rectangle and isosceles triangle which is stated above and always recall that if a line join end points of a two parallel lines then the opposite angle create by this line is always equal and are called as alternate angles.
Complete step by step answer:
Given data:
$\angle BPC = {124^o}$................. (1)
Now as we see from the figure that APC is the diagonal of the rectangle which is a straight line so it makes a straight angle with the point p.
Now as we know that the straight angle = 180 degrees.
So, $\angle BPC + \angle BPA = {180^o}$
Now from equation (1) we have,
$ \Rightarrow {124^o} + \angle BPA = {180^o}$
$ \Rightarrow \angle BPA = {180^o} - {124^o} = {56^o}$............ (2)
Now as we know that in a rectangle the length of the diagonals are always equal and also bisect each other.
Therefore, PA = PB = PC = PB.
So triangles ABP, BCP, CDP, and DAP are an isosceles triangle.
Now as we know that in a isosceles triangle angles opposite to equal sides are always equal.
So in triangle ABP, as AP = BP, so $\angle PBA = \angle BAP$.............. (3)
Now as we know that in a triangle the sum of all angles are equal to 180 degrees.
So in triangle ABP we have,
$ \Rightarrow \angle PBA + \angle BAP + \angle BPA = {180^o}$
Now from equation (2) and (3) we have,
$ \Rightarrow \angle BAP + \angle BAP + {56^o} = {180^o}$
$ \Rightarrow \angle BAP = \dfrac{{{{180}^o} - {{56}^o}}}{2}$
$ \Rightarrow \angle BAP = \dfrac{{{{124}^o}}}{2} = {62^o}$
$ \Rightarrow \angle PBA = \angle BAP = {62^o}$
Now as we know in a rectangle opposite sides are equal and parallel to each other.
Therefore, $\angle PBA = \angle PDC = {62^o}$............. (4) (alternate angles)
Now as we know that in a rectangle adjacent sides of the rectangle always makes a 90 degrees.
Therefore, $\angle ADC = {90^o}$
$ \Rightarrow \angle ADP + \angle PDC = {90^o}$
Now from equation (4) we have,
$ \Rightarrow \angle ADP + {62^o} = {90^o}$
$ \Rightarrow \angle ADP = {90^o} - {62^o} = {28^o}$
So, the correct answer is “${28^o}$”.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall all the properties of rectangle and isosceles triangle which is stated above and always recall that if a line join end points of a two parallel lines then the opposite angle create by this line is always equal and are called as alternate angles.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers