$ABCD$ is a rhombus. Show that diagonal $AC$ bisects $\angle A$ as well as $\angle C$ and diagonal $BD$ bisects $\angle B$ as well as $\angle D$.
Answer
Verified
475.8k+ views
Hint: All the sides of a rhombus are equal and the opposite sides are parallel to each other. Also, in a rhombus the angles opposite to equal sides are always equal.
Complete step by step solution:
The following is the schematic diagram of a rhombus.
Consider $\Delta ABC$,
Since all the sides of rhombus are equal, therefore
$AB = BC$
The angles opposite to the sides $AB$ and $BC$ will be equal. hence
$\angle 4 = \angle 2$.….(i)
Also $AD\parallel BC$ with transversal $AC$, as $AD$ and $BC$ are opposite sides of rhombus and opposite sides of rhombus are parallel to each other. Hence alternate angles will be equal.
$\angle 1 = \angle 4$……(ii)
From equation (i) and (ii).
$\angle 1 = \angle 2$
Hence, it is clear that $AC$ bisects the angle $\angle A$.
Now $AB\parallel DC$ with transversal $AC$, as $AB$ and $DC$ are opposite sides of rhombus and opposite sides of rhombus are parallel to each other. Hence alternate angles will be equal.
$\angle 2 = \angle 3$……(iii)
From equation (i) and (iii).
$\angle 4 = \angle 3$
Hence, it is clear that $AC$ bisects the angle $\angle C$.
Therefore $AC$ bisects angles $\angle A$ and $\angle C$.
Since $CD$ and $BC$ are the sides of rhombus, therefore $CD = BC$.
The following is the schematic diagram of a rhombus.
The angles opposite to the sides $CD$ and $BC$ will be equal. hence
$\angle 5 = \angle 7$..….(iv)
Also $AB\parallel CD$ with transversal $BD$ , as $AB$ and $CD$ are opposite sides of rhombus and opposite sides of rhombus are parallel to each other. Hence alternate angles will be equal.
$\angle 5 = \angle 8$……(v)
From equation (iv) and (v).
$\angle 7 = \angle 8$
Hence $BD$ bisects the angle $\angle B$.
Now $AD\parallel BC$ with transversal $BD$, as $AD$ and $BC$ are opposite sides of rhombus and opposite sides of rhombus are parallel to each other. Hence alternate angles will be equal.
$\angle 6 = \angle 7$……(vi)
From equation (v) and (vi).
$\angle 5 = \angle 6$
Hence $BD$ bisects the angle $\angle D$.
Therefore $BD$ bisects angles $\angle B$ and $\angle D$.
Note: Angle bisector divides the angle in two equal angles. Make sure to use the properties of rhombus in the solution.
Complete step by step solution:
The following is the schematic diagram of a rhombus.
Consider $\Delta ABC$,
Since all the sides of rhombus are equal, therefore
$AB = BC$
The angles opposite to the sides $AB$ and $BC$ will be equal. hence
$\angle 4 = \angle 2$.….(i)
Also $AD\parallel BC$ with transversal $AC$, as $AD$ and $BC$ are opposite sides of rhombus and opposite sides of rhombus are parallel to each other. Hence alternate angles will be equal.
$\angle 1 = \angle 4$……(ii)
From equation (i) and (ii).
$\angle 1 = \angle 2$
Hence, it is clear that $AC$ bisects the angle $\angle A$.
Now $AB\parallel DC$ with transversal $AC$, as $AB$ and $DC$ are opposite sides of rhombus and opposite sides of rhombus are parallel to each other. Hence alternate angles will be equal.
$\angle 2 = \angle 3$……(iii)
From equation (i) and (iii).
$\angle 4 = \angle 3$
Hence, it is clear that $AC$ bisects the angle $\angle C$.
Therefore $AC$ bisects angles $\angle A$ and $\angle C$.
Since $CD$ and $BC$ are the sides of rhombus, therefore $CD = BC$.
The following is the schematic diagram of a rhombus.
The angles opposite to the sides $CD$ and $BC$ will be equal. hence
$\angle 5 = \angle 7$..….(iv)
Also $AB\parallel CD$ with transversal $BD$ , as $AB$ and $CD$ are opposite sides of rhombus and opposite sides of rhombus are parallel to each other. Hence alternate angles will be equal.
$\angle 5 = \angle 8$……(v)
From equation (iv) and (v).
$\angle 7 = \angle 8$
Hence $BD$ bisects the angle $\angle B$.
Now $AD\parallel BC$ with transversal $BD$, as $AD$ and $BC$ are opposite sides of rhombus and opposite sides of rhombus are parallel to each other. Hence alternate angles will be equal.
$\angle 6 = \angle 7$……(vi)
From equation (v) and (vi).
$\angle 5 = \angle 6$
Hence $BD$ bisects the angle $\angle D$.
Therefore $BD$ bisects angles $\angle B$ and $\angle D$.
Note: Angle bisector divides the angle in two equal angles. Make sure to use the properties of rhombus in the solution.
Recently Updated Pages
The complete oxidation of pyruvate by the stepwise class 11 biology CBSE
What is the difference between a compression and a class 11 physics CBSE
Which of these is not a monomer for a high molecular class 11 chemistry CBSE
Read the following statement and select the correct class 11 biology CBSE
STATEMENT1 For an observer looking out through the class 11 physics CBSE
The IUPAC name of K4FeCN6 is a Potassium ferricyanide class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE
What is Environment class 11 chemistry CBSE
Nucleolus is present in which part of the cell class 11 biology CBSE